Содержание
-
ХимияДля студентов I курса специальностей: 2080165 — экология, 08040165 — товароведение и экспертиза товаров, 260800 — технология, конструирование изделий и материалы легкой промышленности ИИИБС, кафедра ЭППк.х.н., доцент А. Н. Саверченко
-
КИСЛОРОДСОДЕРЖАЩИЕОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ Кафедра ЭПП, к.х.н., доцент СаверченкоА.Н.
-
Студент должен:знатьстроение, номенклатуру, свойства, способы получения и применение кислородсодержащих органических соединений уметьсоставлять названия и химические уравнения реакций кислородсодержащих органических соединений
-
К кислородсодержащим органическим соединениям относят многочисленные органические соединения, как природного происхождения, так и синтетические, являющиеся производными углеводородов, в молекулах которых содержатся углеродные атомы, непосредственно связанные с кислородом. В органических кислородсодержащих веществах кислород в соединении с углеродом образует различные группы, в которых углерод затрачивает на соединении с атомами кислорода одну, две или три валентные связи:
-
Остальные валентности углерода могут участвовать в образовании связи либо с углеродными атомами, либо с атомами водорода или других элементов. Таким образом, приведённые кислородсодержащие группы, можно представить как различные стадии окисления углеродных атомов в органических молекулах; эти группы связаны между собой так же, как и соединения, в состав которых они входят, взаимными окислительно-восстановительными превращениями. Гидроксильная группа содержится в спиртах, карбонильная – в альдегидах и кетонах, карбоксильная – в карбоновых кислотах.
-
Спирты и их производные
Производные углеводородов, представляющие собой продукты замещения атома водорода в углеводородной молекуле водным остатком, т.е. гидроксильной группой – OH, называют спиртами. Эти вещества можно рассматривать и как производные воды, в молекуле которой один атом водорода замещён углеводородным радикалом R. Это можно представить схемой:
-
Спирты могут содержать и несколько гидроксильных групп но при разных атомах углерода. Число их характеризует атомность спирта. В соответствии с этим спирты бывают одноатомные и многоатомные; последние подразделяются на двухатомные, трёхатомные и т.д. спирты.
-
Строение. Изомерия.
Изомерия предельных одноатомных спиртов, общая формула которых CnH2n+1OH, обусловлена изомерией углеродного скелета и изомерией положения гидроксильной группы. Спирту состава C3H7OH соответствует два изомера по положению гидроксильной группы:
-
Из бутана и изобутана могут быть произведены четыре изомерных бутиловых спирта. В зависимости от положения гидроксильной группы при первичном, вторичном и третичном углеродном атоме спирты могут быть первичными, вторичными и третичными:
-
Химические свойства
Химические свойства спиртов обусловлены наличием гидроксильной группы. В разнообразных химических превращениях спиртов особая роль принадлежит двум типам реакций: разрыву связи между атомами C и O (1), O и H(2). Положение гидроксильной группы существенно влияет на её поведение в этих превращениях.
-
Кислотные свойства спиртов.
Атомы водорода гидроксильных групп в спиртах проявляют определённую подвижность. Подобно воде, спирты реагируют со щелочными металлами, которые замещают водород спиртовых гидроксильных групп; при этом образуются алкоголяты и выделяется водород:
-
По мере увеличения числа углеродных атомов в углеводородных радикалах спиртов активность последних в этой реакции всё более уменьшается. Высшие спирты реагируют с натрием лишь при нагревании. Первичные спирты значительно активнее в реакциях со щелочными металлами, чем изомерные им вторичные и особенно третичные. В реакции со щелочными металлами спирты проявляют свойства кислот; но в результате влияния, оказываемого на гидроксильную группу алкильным радикалом, спирты – ещё более слабые кислоты, чем вода. Практически спирты – нейтральные вещества: они не показывают ни кислой, ни щелочной реакции на лакмус, не проводят электрический ток.
-
Окисление спиртов.
Кислород воздуха окисляет спирты только при высокой температуре; при этом они горят. В результате происходит полное разрушение молекул с образованием оксида углерода(IV) и воды.Возможно и умеренное окисление спиртов: при этом они окисляются легче, чем соответствующие предельные углеводороды. Углеводороды на холоду не взаимодействуют с раствором перманганата калия или хромовой смесью, спирты же окисляются ими.Внешне реакция проявляется в том, что в случае перманганата калия (KMnO4) исчезает его фиолетовая окраска, а в случае хромовой смеси (K2Cr2O7+H2SO4) её оранжевый цвет переходит в зеленый.
-
Большая склонность спиртов к окислению по сравнению с углеводородами объясняется влиянием имеющейся в их молекулах гидроксильной группы. Молекулы спиртов содержат углеродные атомы, как бы уже подвергшиеся окислению, т.е. связанные с кислородом гидроксида, и поэтому действие окислителя прежде всего направляется на спиртовую группу. При этом окислению легче подвергаются спирты, в которых при углероде спиртовой группы имеется водород, - первичные и вторичные.
-
При окислении первичных спиртов образуются альдегиды, вторичных – кетоны, окисление третичных спиртов сопровождается разрывом углеродной цепи.
-
Дегидратация спиртов.
Дегидратация (отнятие воды от молекулы спирта) приводит к образованию этиленовых углеводородов или простых эфиров. При избытке спирта дегидратация протекает межмолекулярно, что приводит к образованию простого эфира:
-
Внутримолекулярная дегидратация, т.е. за счёт одной молекулы спирта, приводит к образованию этиленового углеводорода:
-
Образование сложных эфиров.
Взаимодействие спиртов с кислотами (органическими и неорганическими) приводит к образованию производных кислот, называемых сложными эфирами: Эта реакция называется реакцией этерификации.
-
Способы получения
Гидролиз галогеналканов. При действии на галогеналкилы воды в присутствии щелочей происходит реакция гидролиза, в результате которой галоген замещается гидроксилом с образованием спирта и галогеноводородной кислоты.
-
Реакция протекает при каталитическом участии образуемых щелочами ионов OH - . В присутствии щелочей галогеноводородная кислота связывается, образуя соответствующую соль. Взаимодействие галогеналкилов с водными растворами щелочей может быть представлено и как реакция обмена
-
Таким образом, при действии водного раствора щелочи на галогеналкилы образуются спирты. Например:
-
Таким образом, при действии водного раствора щелочи на галогеналкилы образуются спирты. Например:
-
С гомологоми этилена реакция протекает по правилу Марковникова. Например:
-
Восстановление альдегидов и кетонов.
При действии водорода в момент выделения (H) на карбонильные соединения альдегиды восстанавливаются в первичные спирты, а кетоны – во вторичные: альдегид кетон первичный спирт вторичный спирт
-
Специфические способы получения спиртов.
Некоторые спирты получают характерными только для них способами. Так, метанол в промышленности получают при взаимодействии водорода с оксидом углерода (II) при повышенном давлении и высокой температуре на поверхности катализатора: синтез газ - метанол
-
Синтез газ получают при пропускании паров воды над раскаленным углем: Этанол (этиловый спирт) в промышленности получают при спиртовом брожении глюкозы
-
Многоатомные спирты
Многоатомные спирты этиленгликоль глицерин
-
Химические свойства.
1. Реагируют со щелочными металлами: 2. Реагируют с галогеноводородами:
-
3. Реагируют с кислотами, образуя сложные эфиры: 4. Реагируют с гидроксидом меди (II) – качественная реакция на многоатомные спирты (ярко-синее окрашивание раствора)
-
Рекомендуемая литература
30 Коровин Николай Васильевич. Общая химия: Учебник. - 2-е изд., испр. и доп. - М.: Высш. шк., 2000. - 558с.: ил. Павлов Н.Н. Общая и неорганическая химия: Учеб. для вузов. – 2-е изд., перераб. и доп. – М.: Дрофа, 2002. – 448 с.: ил. Ахметов Наиль Сибгатович. Общая и неорганическая химия: Учебник для студ. химико-технологических спец. вузов / Н.С.Ахметов. - 4-е изд., исп. - М.:Высш. шк.: Академия, 2001. - 743с.: ил. Глинка Николай Леонидович. Общая химия: Учебное пособие для вузов / Н.Л.Глинка; Ермаков Л.И (ред.) – 29–е изд.; исп. – М.: Интеграл Пресс, 2002 – 727с.: ил. Писаренко А.П., Хавин З.Я. Курс органической химии – М.: Высшая школа,1975,1985. Альбицкая В.М., Серкова В.И. Задачи и упражнения по органической химии. – М.: Высш. шк., 1983. Грандберг И.И. Органическая химия – М.: Дрофа, 2001. Петров А.А., Бальян Х.В., Трощенко А.Т. Органическая химия М.: Высш. Шк., 1981 Иванов В.Г., Гева О.Н., Гаверова Ю.Г. Практикум по органической химии – М.: Академия., 2000.
Нет комментариев для данной презентации
Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.