Содержание
-
Полуправильные и звездчатые многогранники. Кристаллы.
-
Полуправильные многогранники
Архимедовы тела — выпуклые многогранники, обладающие двумя свойствами:
- Все грани являются правильными многоугольниками двух или более типов (если все грани — правильные многоугольники одного типа, это — правильный многогранник);
- Для любой пары вершин существует симметрия многогранника (то есть движение переводящее многогранник в себя) переводящая одну вершину в другую. В частности, все многогранные углы при вершинах конгруэнтны.
-
Каталановы тела
- Двойственные архимедовым телам, так называемые Каталановы тела, имеют конгруэнтные грани, равные двугранные углы и правильные многогранные углы. Каталановы тела тоже иногда называют полуправильными многогранниками. В этом случае полуправильными многогранниками считается совокупность архимедовых и каталановых тел. Архимедовы тела являются полуправильными многогранниками в том смысле, что их грани — правильные многоугольники, но они не одинаковы, а каталановы — в том смысле, что их грани одинаковы, но не являются правильными многоугольниками; при этом для тех и других сохраняется условие одного из типов пространственной симметрии: тетраэдрического, октаэдрического или икосаэдрического.
- То есть, полуправильными в этом случае называются тела, у которых отсутствует только одно из первых двух из следующих свойств правильных тел:
- Все грани являются правильными многоугольниками;
- Все грани одинаковы;
- Тело относится к одному из трёх существующих типов пространственной симметрии.
-
Существует 13 архимедовых тел, два из которых (курносый куб и курносый додекаэдр) не являются зеркально-симметричными и имеют левую и правую формы.
- Кубооктаэдр
- Икосододекаэдр
- Усечённый тетраэдр
-
- Усечённый октаэдр
- Усечённый икосаэдр
- Усечённый куб
- Усечённый додекаэдр
- Ромбокубооктаэдр
- Ромбоикосододекаэдр
-
- Ромбоусечённый кубооктаэдр
- Ромбоусечённый икосододекаэдр
- Курносый куб
- Курносый додекаэдр
-
Звездчатые многогранники
- Звёздчатый многогранник (звёздчатое тело) — это невыпуклый многогранник, грани которого пересекаются между собой. Как и у незвёздчатых многогранников грани попарно соединяются в ребрах, при этом внутренние линии пересечения не считаются рёбрами.
- Существует только одна звёздчатая форма октаэдра.
-
Додекаэдр имеет 3 звёздчатые формы: малый звёздчатый додекаэдр, большой додекаэдр, большой звёздчатый додекаэдр
-
Икосаэдр имеет 59 звёздчатых форм
-
Кубооктаэдр имеет 4 звёздчатые формы
-
Икосододекаэдр имеет множество звёздчатых форм, первая из которых есть соединение икосаэдра и додекаэдра
-
Кристаллы
Кристаллы — это твёрдые вещества, имеющие естественную внешнюю форму правильных симметричных многогранников, основанную на их внутренней структуре, то есть на одном из нескольких определённых регулярных расположений составляющих вещество частиц (атомов, молекул, ионов).
-
- Виды кристаллов. Следует разделить идеальный и реальный кристалл.
- Идеальный кристалл. Является, по сути, математическим объектом, имеющим полную, свойственную ему симметрию, идеализированно ровные гладкие грани.
- Реальный кристалл. Всегда содержит различные дефекты внутренней структуры решетки, искажения и неровности на гранях и имеет пониженную симметрию многогранника вследствие специфики условий роста, неоднородности питающей среды, повреждений и деформаций. Реальный кристалл не обязательно обладает кристаллографическими гранями и правильной формой, но у него сохраняется главное свойство — закономерное положение атомов в кристаллической решётке.
-
Нет комментариев для данной презентации
Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.