Презентация на тему "Элементы симметрии правильных многогранников"

Презентация: Элементы симметрии правильных многогранников
Включить эффекты
1 из 30
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
4.2
20 оценок

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Интересует тема "Элементы симметрии правильных многогранников"? Лучшая powerpoint презентация на эту тему представлена здесь! Данная презентация состоит из 30 слайдов. Средняя оценка: 4.2 балла из 5. Также представлены другие презентации по математике для 10-11 класса. Скачивайте бесплатно.

Содержание

  • Презентация: Элементы симметрии правильных многогранников
    Слайд 1

    Правильные Л.С. Атанасян "Геометрия 10-11" Савченко Е.М., учитель математики, МОУ гимназия № , г. Полярные Зори, Мурманской обл. многогранники pptcloud.ru

  • Слайд 2

    Симметрия относительно точки Симметрия относительно прямой А А1 О Точки А и А1 называются симметричными относительно точки О (центр симметрии), если О – середина отрезка АА1. Точка О считается симметричной самой себе. А А1 a Точки А и А1 называются симметричными относительно прямой (ось симметрии), если прямая проходит через середину отрезка АА1 и перпендикулярна к этому отрезку. Каждая точка прямой считается симметричной самой себе. a a a

  • Слайд 3

    Симметрия относительно плоскости А Точки А и А1 называются симметричными относительно плоскости (плоскость симметрии), если плоскость проходит через середину отрезка АА1 и перпендикулярна к этому отрезку. Каждая точка плоскости считается симметричной самой себе. А1 О

  • Слайд 4

    Если фигура имеет центр (ось, плоскость) симметрии, то говорят, что она обладает центральной (осевой, зеркальной) симметрией. Фигура может иметь один или несколько центров симметрии (осей симметрии, плоскостей симметрии). О А Центр симметрии О А Плоскость симметрии О А a А1 Точка (прямая, плоскость) называется центром (осью, плоскостью) симметрии, если каждая точка фигуры симметрична относительно нее некоторой точке той же фигуры. Центр, ось, плоскость симметрии фигуры. А1 Ось симметрии А1

  • Слайд 5

    С симметрией мы часто встречаемся в архитектуре.

  • Слайд 6

    Почти все кристаллы, встречающиеся в природе, имеют ось или плоскость симметрии. В геометрии центр, оси и плоскости симметрии многогранника называются элементами симметрииэтого многогранника. Апатит Золото

  • Слайд 7

    Кальцит (двойник) Поваренная соль Лед

  • Слайд 8

    Альмандин Ставролит (двойник)

  • Слайд 9

    Правильный тетраэдр составлен их четырех равносторонних треугольников и в каждой вершине сходятся 3 ребра. 4 грани, 4 вершины и 6 ребер. Сумма плоских углов при каждой вершине равна 1800 Выпуклый многогранник называется правильным, если все его грани – равные правильные многоугольники и в каждой его вершине сходится равное число ребер. В каждом правильном многограннике сумма числа и вершин равна числу рёбер,увеличенному на 2. грани вершины ребра Г + В = Р + 2 60+ 60 + 60

  • Слайд 10

    Мы различаем правильный тетраэдр и правильную пирамиду. В отличие от правильного тетраэдра, все ребра которого равны, в правильной треугольной пирамиде боковые ребра равны друг другу, но они могут быть не равны ребрам основания пирамиды. «тетра» - 4 Названия многогранников пришли из Древней Греции и в них указывается число граней.

  • Слайд 11

    Правильный тетраэдр не имеет центра симметрии. Осей симметрии – 3. Плоскостей симметрии – 6. Прямая, проходящая через середины двух противоположных ребер, является его осью симметрии. Плоскость, проходящая через ребро перпендикулярно к противоположному ребру, - ось симметрии. Элементы симметрии тетраэдра.

  • Слайд 12

    Куб составлен из шести квадратов. Каждая вершина куба является вершиной трех квадратов. Следовательно, сумма плоских углов при каждой вершине равна 2700. 6 граней, 8 вершин и 12 ребер «гекса» - 6 Куб, гексаэдр.

  • Слайд 13

    Куб имеет 9 плоскостей симметрии.

  • Слайд 14

    Правильный октаэдр составлен из восьми равносторонних треугольников. Каждая вершина октаэдра является вершиной четырех треугольников. Сумма плоских углов при каждой вершине равна 2400. «окта» - 8 Октаэдр имеет 8 граней, 6 вершин и 12 ребер

  • Слайд 15

    Правильный икосаэдр составлен из двадцати равносторонних треугольников. Каждая вершина икосаэдра является вершиной пяти правильных треугольников. Следовательно, сумма плоских углов при каждой вершине равна 3000. «икоса» - 20 Икосаэдр имеет 20 граней, 12 вершин и 30 ребер

  • Слайд 16

    Правильный додекаэдр составлен из двенадцати правильных шестиугольников. Каждая вершина додекаэдра является вершиной трех правильных пятиугольников. Следовательно, сумма плоских углов при каждой вершине равна 3240. «додека» - 12 Додекаэдр имеет 12 граней, 20 вершин и 30 ребер.

  • Слайд 17

    Первым свойства правильных многогранников описал древнегреческий ученый Платон. Именно поэтому правильные многогранники называют также телами Платона. Платон 428 – 348 г. до н.э. Платон считал, что мир строится из четырёх «стихий» - огня, земли, воздуха и воды, а атомы этих «стихий» имеют форму четырёх правильных многогранников.

  • Слайд 18

    огонь воздух вода земля Правильные многогранники в философской картине мира Платона. Тетраэдр олицетворял огонь, поскольку его вершина устремлена вверх, как у разгоревшегося пламени; икосаэдр – как самый обтекаемый – воду; куб – самая устойчивая из фигур – землю, а октаэдр – воздух.

  • Слайд 19

    вселенная Пятый многогранник – додекаэдр символизировал весь мир и почитался главнейшим.

  • Слайд 20

    Большой интерес к формам правильных многогранников проявляли скульпторы, архитекторы, художники. Их поражало совершенство, гармония многогранников. Леонардо да Винчи (1452 – 1519) увлекался теорией многогранников и часто изображал их на своих полотнах. Сальвадор Дали на картине «Тайная вечеря» изобразил И. Христа со своими учениками на фоне огромного прозрачного додекаэдра.

  • Слайд 21

    Архимед 287 – 212 гг. до н.э. Это многогранники, которые получаются из платоновых тел в результате их  усечения. усечённый тетраэдр, усечённый гексаэдр (куб), усечённый октаэдр, усечённый додекаэдр, усечённый икосаэдр. Архимед описал полуправильные многогранники

  • Слайд 22

    Усеченный тетраэдр Выполняя простейшие сечения, мы можем получить необычные многогранники. Усеченный тетраэдр получится, если у тетраэдра срезать его четыре вершины.

  • Слайд 23

    Усеченный куб Срезав вершины получим новые грани – треугольники. А из граней куба получатся грани – восьмиугольники. Усеченный куб получится, если у куба срезать все его восемь вершин.

  • Слайд 24

    Кубооктаэдр Можно срезать вершины иначе. Получим кубооктаэдр. У кубооктаэдра можно снова срезать все его вершины получим усеченный кубооктаэдр.

  • Слайд 25

    Усеченный октаэдр Срежем у октаэдра все его восемь вершин. Срезав вершины получим новые грани – квадраты. А из граней октаэдра получатся грани – шестиугольники.

  • Слайд 26

    Можно срезать вершины иначе и получим новый полуправильный многогранник.

  • Слайд 27

    Икосододекаэдр Ромбоусеченный икосододекаэдр Срезав вершины икосаэдра, получим новые грани пятиугольники, а грани икосаэдра превратятся в шестиугольники. Усеченный икосаэдр (футбольный мяч) Срезав вершины иначе получим другой многогранник, грани которого – пятиугольники и треугольники.

  • Слайд 28

    Усеченный додекаэдр С додекаэдром работы больше. Надо срезать двадцать вершин. Грани усеченного додекаэдра – треугольники и десятиугольники.

  • Слайд 29

    Курносый куб Курносый додекаэдр Ромбоикосододекаэдр Ромбокубооктаэдр

  • Слайд 30

    Литература. «Геометрия 10-11» Л.С. Атанасян и др. «Детская энциклопедия», том 2. Издательство «Просвещение», Москва 1965. Хотите узнать больше? Посетите сайты. http://ru.wikipedia.org/wiki/%D0%90%D1%80%D1%85%D0%B8%D0%BC%D0%B5%D0%B4%D0%BE%D0%B2%D0%BE_%D1%82%D0%B5%D0%BB%D0%BE http://sharovaeva.narod.ru/ http://pirog13.narod.ru/new_page_5.htm http://www.booksite.ru/fulltext/1/001/008/077/253.htm http://mathworld.wolfram.com/topics/PolyhedronNets.html

Посмотреть все слайды

Сообщить об ошибке