Презентация на тему "Правильные многогранники"

Презентация: Правильные многогранники
1 из 19
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
5.0
1 оценка

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Смотреть презентацию онлайн на тему "Правильные многогранники" по математике. Презентация состоит из 19 слайдов. Материал добавлен в 2017 году. Средняя оценка: 5.0 балла из 5.. Возможность скчачать презентацию powerpoint бесплатно и без регистрации. Размер файла 2.35 Мб.

  • Формат
    pptx (powerpoint)
  • Количество слайдов
    19
  • Слова
    математика
  • Конспект
    Отсутствует

Содержание

  • Презентация: Правильные многогранники
    Слайд 1

    ПРЕДУПРЕЖДЕНИЕ

    Данная программа предназначена для частного просмотра. За несанкционированное изготовление копий, коммерческий прокат, трансляцию по кабельным и эфирным каналам телевидения установлена ответственность, предусмотренная ст. 48, 49 Закона РФ “Об авторских и смежных правах” ст. 150 п. 4 кодекса об административных правонарушениях и ст. 146 Уголовного кодекса Российской Федерации.

  • Слайд 2

    10 “Б” Продакшн

    Специально для тех кто не любит геометрию Представляет Художественный фильм “Правильные многогранники”

  • Слайд 3

    Правильные многогранники

    1) Симметрия в пространстве. 2) Понятие правильного многогранника. 3) Элементы симметрии правильных многогранников. Скандалы, интриги, расследования.

  • Слайд 4

    1) Симметрия в пространстве.

    Точки А и А1 называются симметричными относительно точки О (центр симметрии), если О- середина отрезка АА1 (рис. 1). Точка О считается симметричной самой себе.

  • Слайд 5

    Точки А и А1 называются симметричными относительно прямой а (ось симметрии), если прямая а проходит через середину отрезка АА1 и перпендикулярна к этому отрезку(рис. 2). Каждая точка прямой а считается симметричной самой себе.  

  • Слайд 6

    Точки А и А1 называются симметричными относительно плоскости α (плоскость симметрии), если плоскость α проходит через середину отрезка АА1 и перпендикулярна к этому отрезку (рис. 3). Каждая точка плоскости α считается симметричной самой себе.  

  • Слайд 7

    Точка (прямая, плоскость) называется центром (осью, плоскостью) симметрию фигуры, если каждая точка фигуры симметрична относительно нее некоторой точке той же фигуры. Фигура может иметь один или несколько центров симметрии. С симметрией мы часто встречаемся в природе, архитектуре, технике, быту.

  • Слайд 8

    Многие здания симметричны относительно плоскости, например главное здание Московского государственного университета. Почти все кристаллы, встречающиеся в природе, имеют центр, ось или плоскость симметрии. В геометрии центр, ось и плоскость симметрии многогранника называются элементами симметрии этого многогранника.

  • Слайд 9

    Симметрия в архитектуре

  • Слайд 10
  • Слайд 11

    2) Понятие правильного многогранника.

    Выпуклый многогранник называется правильным, если все его грани- равные правильные многоугольники и в каждой его вершине сходиться одно и то же число ребер. Примером правильного многогранника является куб. Все его грани- равные квадраты, и в каждой вершине сходятся три ребра. Всего существует 5 правильных многогранников, других видов правильных многогранников нет.

  • Слайд 12

    Правильный тетраэдр

    Составлен из четырех равносторонних треугольников. Каждая его вершина является вершиной трех треугольников. Следовательно сумма плоских углов при каждой вершине равна 180°.

  • Слайд 13

    Правильный октаэдр

    Составлен из восьми равносторонних треугольников. Каждая вершина октаэдра является вершиной четырех треугольников. Следовательно сумма плоских углов при каждой вершине равна 240°.

  • Слайд 14

    Правильный икосаэдр

    Составлен из двадцати равносторонних треугольников. Каждая вершина икосаэдра является вершиной пяти треугольников. Следовательно сумма плоских углов при каждой вершине равна 300 °.

  • Слайд 15

    Куб

    Составлен из шести квадратов. Каждая вершина куба является вершиной трех квадратов. Следовательно, сумма плоских углов при каждой вершине равна 270 °.

  • Слайд 16

    Правильный додекаэдр

    Составлен из двенадцати правильных пятиугольников. Каждая вершина додекаэдра является вершиной трех правильных пятиугольников. Следовательно, сумма плоских углов при каждой вершине равна 324°.

  • Слайд 17

    3) Элементы симметрии правильных многогранников.

    Правильный тетраэдр не имеет центра симметрии. Прямая, проходящая через середины двух противоположных ребер, является его осью симметрии. Плоскость а проходящая через ребро АВ перпендикулярно к противоположному ребру СD правильного тетраэдра ABCD,является плоскостью симметрии. Правильный тетраэдр имеет три оси симметрии и шесть плоскостей симметрии.

  • Слайд 18

    Куб имеет один центр симметрии- точку пересечения его диагоналей. Куб имеет девять осей симметрии и девять плоскостей симметрии. Правильный октаэдр, правильный икосаэдр, правильный додекаэдр имеют центр симметрии и несколько осей и плоскостей симметрии.

  • Слайд 19

    Работу выполнили ученики 10 “Б”cl@$$a:

    Матвеев Андрей= E100nec = Ефремов Игорь = 1grek = Гордеев Денис = Gorden = Медведев Гриша = gR1ZzLy = Аксаков Вова = F@r$ = |Научный консультант: учитель математики Маркова З.Г. МОУ СОШ №6 г.Чебоксары - 2008

Посмотреть все слайды

Сообщить об ошибке