Содержание
-
Геометрические задачи типа «С4» по материалам ЕГЭ – 2010 МОУ «Инсарская средняя общеобразовательная школа №1» Чудаева Елена Владимировна, учитель математики, г. Инсар, Республика Мордовия
-
Задачи №1 №2 №3 №4 ? ? ? Желаю успеха! "Дорогу осилит идущий!" Помните:
-
В треугольнике АВС АВ=15, ВС = 12, СА = 9. Точка D лежит на прямой ВС так, что BD:DC = 3:8. Окружности, вписанные в каждый из треугольников ADC и ADB, касаются стороны AD в точках E и F. Найдите длину отрезка EF. Решение. А В С Возможны два случая: точка D лежит на отрезке ВС и точка D лежит вне отрезка ВС. 3ч D 8ч А В С D F E 3ч 8ч Рассмотрим 1 случай. №1 E F
-
В треугольнике АВС АВ=15, ВС = 12, СА = 9. Точка D лежит на прямой ВС так, что BD:DC = 3:8. Окружности, вписанные в каждый из треугольников ADC и ADB, касаются стороны AD в точках E и F. Найдите длину отрезка EF. Решение. А В С Возможны два случая: точка D лежит на отрезке ВС и точка D лежит вне отрезка ВС. 3ч D 8ч Рассмотрим 1 случай. Найдем: Значит, Из ADC, Из ADВ, №1 E F ?
-
В треугольнике АВС АВ=15, ВС = 12, СА = 9. Точка D лежит на прямой ВС так, что BD:DC = 3:8. Окружности, вписанные в каждый из треугольников ADC и ADB, касаются стороны AD в точках E и F. Найдите длину отрезка EF. Решение. Возможны два случая: точка D лежит на отрезке ВС и точка D лежит вне отрезка ВС. Значит, Из ADC, Из ADВ, А В С D F E 3ч 8ч Ответ: 9 или №1 Рассмотрим 2 случай.
-
Пусть окружность вписана в треугольник ABC. Тогда расстояние от вершины A до точки касания окружности со стороной AB равно А В С О x x y y z z Доказательство. М N К Мы знаем, что центр вписанной в треугольник окружности лежит на пересечении биссектрис внутренних углов треугольника, значит AM=AK=x, BM=BN=y, CK=CN=z. Тогда, периметр АВС равен: , откуда или Вспомогательная задача.
-
Точка H – основание высоты треугольника со сторонами 10, 12, 14 , опущенной на сторону, равную 12. Через точку H проведена прямая, отсекающая от треугольника подобный ему треугольник и пересекающая сторону, равную 10, в точке M . Найдите HM . Решение. Пусть АВ = 10, ВС = 12, АС = 14. По условию АВСНВМ, и имеют общий угол В, значит возможны два случая. 1 случай.ВМН = ВАС; А В С Н 10 14 12 М 2 случай.ВМН = АСВ; АВН – прямоугольный, BН=АВ·cosB = 2. значит, , значит, Ответ: №2
-
нижнее основание вдвое больше верхнего, BC = a, АD = 2a, верхнее основание вдвое больше нижнего, AD = a, BC = 2a. Площадь трапеции ABCD равна 240. Диагонали пересекаются в точке O , отрезки, соединяющие середину P основания AD с вершинами B и C , пересекаются с диагоналями трапеции в точках M и N . Найдите площадь четырехугольника OMPN , если одно из оснований трапеции втрое больше другого. А P D M N O В С Решение. Возможно два вида трапеции. Найдем площадь ОMPN: В обоих случаях: Рассмотрим первый случай. №3 SMONP=SAOD – SAMP – SPND.
-
По условиюBC = a, АD = 3a, аh = 120. 1) BOCAOD , по трем углам h Значит высота AOD равна , тогда: 2) BMCAMP , по трем углам, Тогда высота треугольника АМР равна 3/5 высоты трапеции. 3) Находим искомую площадь: а 3а SMONP=SAOD – SAMP – SPND.
-
По условиюBC = 3a, АD = a, аh = 120. 1) BOCAOD , по трем углам h Значит высота AOD равна , тогда: 2) BMCAMP , по трем углам, Тогда высота треугольника АМР равна 1/7 высоты трапеции. 3) Находим искомую площадь: А P D M N O В С Ответ: 27 или 5. 3а а SMONP=SAOD – SAMP – SPND.
-
D A B C D A B C №4 В параллелограмме ABCD AB=12, биссектрисы углов при стороне AD делят сторону ВС точками M и N, так что BM:MN=1:7. Найдите ВС. Решение. O М N М N O Пусть О – точка пересечения биссектрис. По условию значит М лежит между точками В и N. Возможны два случая. 1) точка О – лежит внутри параллелограмма; Рассмотрим первый случай. 2) точка О – лежит вне параллелограмма. 12
-
D A B C №4 В параллелограмме ABCD AB=12, биссектрисы углов при стороне AD делят сторону ВС точками M и N, так что BM:MN=1:7. Найдите ВС. Решение. O М N Пусть О – точка пересечения биссектрис. По условию значит М лежит между точками В и N. Рассмотрим первый случай. 12 1) ABN – равнобедренный, т.к. ВNА=NAD- накрест лежащие; значит ВNА= ВAN и AB=BN=12, АN – биссектриса А, тогда Найдем MN=BN-BM=12-1,5=10,5. 2) Аналогично, DMC – равнобедренный, MC=DC=12. Тогда NC= MC-MN=12-10,5=1,5. 3) Значит, ВС=ВМ+MN+NC=13,5. 1,5 10,5 1,5
-
№4 В параллелограмме ABCD AB=12, биссектрисы углов при стороне AD делят сторону ВС точками M и N, так что BM:MN=1:7. Найдите ВС. Решение. Рассмотрим второй случай: точка О – лежит вне параллелограмма. 1)ABМ– равнобедренный, т.к. Тогда АВ=ВМ=12. 2) Аналогично DNC– равнобедренный, 3) Значит, ВС=ВN+NC=96+12=108. D A B C М N O 12 12 12 12 ВMА=MAD- накрест лежащие; значит ВMА= ВAM. АМ – биссектриса А, По условию значит Ответ: 13,5 или 108. тогда NC=DC=12.
-
http://office.microsoft.com/ru-ru/images/results.aspx?qu=%D1%81%D0%BC%D0%B0%D0%B9%D0%BB%D1%8B Использованные ресурсы Тексты задач взяты с сайта Александра Ларина http://alexlarin.narod.ru/ege.html Рисунок на слайде №2 Для создания шаблона презентации использовалась картинка http://www.box-m.info/uploads/posts/2009-04/1238954029_1.jpg и шаблон с сайта http://aida.ucoz.ru
Нет комментариев для данной презентации
Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.