Содержание
-
МОУ лицей №10 города Советска Калининградской области учитель математики Разыграева Татьяна Николаевна Понятие корня n – й степени из действительного числа. pptcloud.ru
-
Какая кривая является графиком функции y = x²? Какая кривая является графиком функции y = x⁴ ? Рассмотрим уравнение x⁴ = 1. Построим графики функций y = x⁴ и y = 1. х у 0 y = x² y = 1 1 -1 y = 1 Ответ: x = 1, x = -1. Аналогично: x⁴ = 16. Ответ: x = 2, x = -2. Аналогично: x⁴ = 5. y = 5 Ответ:
-
Рассмотрим уравнение x⁵ = 1. Построим графики функций y = x⁵ и y = 1. х у 0 y = x³ 1 y = 7 -1 y = 1 Аналогично: x⁵ = 7. Ответ: x = 1. Ответ: Рассмотрим уравнение: где a > 0, n N, n >1. Если n - чётное, то уравнение имеет два корня: Если n - нечётное, то один корень:
-
Определение 1 : Корнем n – й степени из неотрицательного числа a (n = 2,3,4,5,…) называют такое неотрицательное число, которое при возведении в степень n даёт в результате число a. Это число обозначают: a n - подкоренное выражение -показатель корня Если a 0, n = 2,3,4,5,…, то n 1) a 0; 2) ( a ) = a; n n Операцию нахождения корня из неотрицательного числа называют извлечением корня.
-
Операция извлечение корня является обратной по отношению к возведению в соответствующую степень. 5² = 25 10³ = 1000 0,3⁴ = 0,0081 25 = 5 1000 = 10 3 0,0081 = 0,3 4 Иногда выражение a называют радикалом от латинского слова radix – «корень». n Символ - это стилизованная буква r.
-
Пример 1: Вычислить: а) 49; б) 0,125; в) 0 ; г) 17 3 7 4 Решение: а) 49 = 7, так как 7 > 0 и 7² = 49; 3 б) 0,125 = 0,5, так как 0,5 > 0 и 0,5³ = 0,125; в) 0 ; г) 17 ≈ 2,03 4 Определение2: Корнем нечётной степени n из отрицательного числа a (n = 3,5,…) называют такое отрицательное число, которое при возведении в степень n даёт в результате число a.
-
Если a
-
Возведём обе части уравнения в куб: а) б) Возведём обе части уравнения в четвёртую степень: в) Решений нет. Почему? г) Возведём обе части уравнения в шестую степень:
-
Домашнее задание: § 39, № 1067, 1071, 1076, 1078. Удачи!!!!!
Нет комментариев для данной презентации
Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.