Содержание
-
Темаурока:
Линейные дифференциальные уравнения первого порядка Преподаватель математики и физики ГБПОУ Салаватского индустриального колледжа Ягаффарова Д.У. 2015г.
-
Опрос
1. Какое уравнение называется дифференциальным? Уравнение, содержащее производные искомойфункции или её дифференциалы. 3.Что значит решить ДУ? Найти такую функцию, подстановка которой в это уравнение обращает его в тождество. 4. Какое решение ДУ называется общим? Решение, содержащее произвольную постоянную С. 5. Какое решение ДУ называется частным? Решение, в которое подставлено числовое значение С. 2. Какие из следующих уравнений являются дифференциальными?
-
7. Определите порядок следующих ДУ: 9. Какое уравнение называется ДУ первого порядка с разделяющимися переменными? Уравнение вида Уравнение вида 8. Какое уравнение называется ДУ первого порядка с разделёнными переменными? 6. Что называется порядком ДУ? Наивысший порядок производной, входящий в уравнение.
-
Линейные дифференциальные уравнения первого порядка
Иоганн Бернулли (1667—1748) Яков Бернулли (1654-1705) К портрету Иоганна Вольтер написал четверостишие: Его ум видел истину, Его сердце познало справедливость. Он — гордость Швейцарии И всего человечества.
-
Объекты, названные в честь членов семьи Дифференциальное уравнение Бернулли — в честь Якова. Закон Бернулли и Интеграл Бернулли в гидродинамике — в честь Даниила. Лемниската Бернулли — в честь Якова. Многочлен Бернулли — в честь Якова. Неравенство Бернулли — в честь Иоганна. Распределение Бернулли в теории вероятностей — в честь Якова. Числа Бернулли — в честь Якова. Три поколения Бернулли дали 8 крупных математиков и физиков. Среди академиков Петербургской Академии наук — пятеро представителей семьи Бернулли. В честь Якова и Иоганна Бернулли назван кратер на Луне.
-
Уравнение Якова Бернулли
Метод Лагранжа ДУ с разделяющимися переменными Неоднородное Однородное Метод Иоганна Бернулли Метод вариации произвольной постоянной Метод подстановки Линейное
-
Линейные дифференциальные уравнения первого порядка
ЛинейноеДУ первого порядка называется однородным, если функция Замечание. Уравнение называется линейным, так как искомая функцияyи её производная y’входят в это уравнение в первой степени. Уравнение вида , где и – функции переменнойили постоянные величины, называется линейным дифференциальным уравнением первого порядка ЛинейноеДУ первого порядка называется неоднородным, если функция
-
1)
Какие из данных уравнений являются линейными уравнениями первого порядка, а какие нет и почему? 1) Есть линейное уравнение первого порядка, так как yи y’входят в первой степени, а - функции одной переменной х 2) 3) 2) Не является линейным, так как содержит вторую производную 3) Не является линейным, так как содержит
-
Линейное однородное ДУ первого порядка
1. Решить уравнение Решение: имеем Получаем (общее решение) 2. Решить уравнение Выразить производную функции через дифференциалы Разделить переменные Интегрировать (общее решение) Решение:
-
Линейное неоднородное ДУ. Метод Иоганна Бернулли Замечание. Любую величину можно представить в форме произведения двух сомножителей, причем один из множителей можно выбрать по своему желанию. В результате линейное неоднородное ДУ сводиться к двум уравнениям с разделяющимися переменными: где и - новые функции переменной 1. Решить уравнение Решение: Положим тогда или
-
Получим или Выразить производную функции через дифференциалы Разделить переменные Интегрировать С=0, ввиду произвольности в выборе (1) Имеем
-
Выразить производную функции через дифференциалы Разделить переменные Интегрировать постоянную С писать обязательно Окончательно получим (общее решение) Замечание. Уравнение (1) можно было записать в эквивалентном виде:
-
Алгоритм решения линейного ДУ первого порядка
1. Приводят уравнение к виду находят 2. Используя подстановку и подставляют эти выражения в уравнение. 3. Группируют члены уравнения, выносят одну из функций за скобки. Находят вторую функцию, приравняв выражение в скобках нулю и решив полученное уравнение. 4. Подставляют найденную функцию в оставшееся выражение и находят вторую функцию. 5. Записывают общее решение, подставив выражения для найденных функций и в равенство 6. Если требуется найти частное решение , то определяют С из начальных условий и подставляют в общее решение. или
-
Примеры
Решить уравнения: 1. 2. Ответ: Ответ:
-
Вопросы для самоконтроля:
1. Какое уравнение называется линейным ДУ первого порядка? 2. При каких условиях линейное ДУ первого порядка называется однородным? ДУ с разделяющимися переменными 3. К какому ДУ приводится линейное однородное уравнение ? 4. Какими методами решается линейное неоднородное ДУ ? Методы Бернулли, Лагранжа 5. В чем заключается метод Бернулли? В подстановке
-
Домашнее задание
1. Решить линейное ДУ первого порядка 2. Решить задачу Коши для линейного ДУ первого порядка
-
Спасибо за внимание
Нет комментариев для данной презентации
Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.