Содержание
-
Творческий проект
Тема урока: « СВОЙСТВА ЛОГАРИФМОВ» Преподаватель математики КГБОУ НПО «Профессиональное училище № 35» Кулишкина Л.М. Барнаул 2011 5klass.net
-
Цели урока:
Образовательные: Повторить определение логарифма; познакомиться со свойствами логарифмов; научиться применять свойства логарифмов при решении упражнений.
-
Определение логарифма
Логарифмом положительного числа b по основанию а ,где а >0 и а≠ 1, называется показатель степени, в которую нужно возвести число а, чтобы получить число b. Основное логарифмическое тождество alogab=b ( где a>0, a≠1, b>0 )
-
История возникновения логарифмов
Слово логарифм происходит из двух греческих слов и оно переводится, как отношение чисел. В течение ХVI в. резко возрос объем работы, связанный с проведением приближенных вычислений в ходе решения разных задач, и в первую очередь задач астрономии, имеющей непосредственное практическое применение (при определения положения судов по звездам и по Солнцу). Наибольшие проблемы возникали при выполнении операций умножения и деления. Попытки частичного упрощения этих операций путем сведения их к сложению большого успеха не приносили.
-
Логарифмы необычайно быстро вошли в практику. Изобретатели логарифмов не ограничились разработкой новой теории. Было создано практическое средство – таблицы логарифмов, - резко повысившее производительность труда вычислителей. Добавим, что уже в 1623 г., т.е. всего через 9 лет после издания первых таблиц, английским математиком Д. Гантером была изобретена первая логарифмическая линейка, ставшая рабочим инструментом для многих поколений. Первые таблицы логарифмов составлены независимо друг от друга шотландским математиком Дж. Непером (1550 - 1617) и швейцарцем И. Бюрги (1552 - 1632). В таблицы Непера вошли значения логарифмов синусов, косинусов и тангенсов для углов от 0 до 900 с шагом в 1 минуту. Бюрги подготовил свои таблицы логарифмов чисел, но вышли в свет они в 1620 г., уже после издания таблиц Непера, и поэтому остались незамечеными. Непер Джон ( 1550-1617 )
-
Изобретение логарифмов, сократив работу астронома, продлила ему жизнь. П. С. Лаплас Поэтому открытие логарифмов, сводящее умножение и деление чисел к сложению и вычитанию их логарифмов, удлинило по выражению Лапласа, жизнь вычислителей.
-
Свойства степени
ах · ау = ах +у = ax –y ( x)y = ax·y
-
Вычислите:
-
Проверьте :
-
СВОЙСТВА ЛОГАРИФМОВ
-
Применениеизученного материала
а) log 153 + log 155 = log 15(3 · 5) = log 1515 =1,б) log 1545 – log 153 = log 15 = log 1515 = 1 в) log 243 = log 226 = 6 log 22 = 6,г) log 7494 = log 7(72)4 = log 7 78 = 8 log 77 = 8. Стр. 93; № 290,291 - 294, 296* (нечётные примеры)
-
Найдите вторую половину формулы
-
- Проверьте :
-
Домашнее задание: 1. Выучить свойства логарифмов 2. Учебник : § 16 стр. 92-93; 3. Задачник: № 290 ,291 ,296 (чётные примеры)
-
Продолжите фразу: “Сегодня на уроке я узнал…” “Сегодня на уроке я научился…” “Сегодня на уроке я познакомился…” “Сегодня на уроке я повторил…” “Сегодня на уроке я закрепил…” Урок закончен!
-
Используемые учебники и учебные пособия: Мордкович А.Г. Алгебра и начала анализа. 11 класс: учебник профильного уровня / А.Г. Мордкович, П.В. Семенов и др. – М.: Мнемозина, 2007. Мордкович А.Г. Алгебра и начала анализа. 11 класс: задачник профильного уровня / А.Г. Мордкович, П.В. Семенов и др. – М.: Мнемозина, 2007. Используемая методическая литература: Мордкович А.Г. Алгебра. 10-11: методическое пособие для учителя. – М.: Мнемозина, 2000 (Калининград: Янтарный сказ, ГИПП). Математика. Еженедельное приложение к газете «Первое сентября».
-
Благодарю за внимание!
Нет комментариев для данной презентации
Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.