Презентация на тему "Метод параллельного проектирования. Изображение пространственных фигур на плоскости"

Презентация: Метод параллельного проектирования. Изображение пространственных фигур на плоскости
1 из 19
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
5.0
1 оценка

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Презентация на тему "Метод параллельного проектирования. Изображение пространственных фигур на плоскости" по математике. Состоит из 19 слайдов. Размер файла 0.22 Мб. Каталог презентаций в формате powerpoint. Можно бесплатно скачать материал к себе на компьютер или смотреть его онлайн.

  • Формат
    pptx (powerpoint)
  • Количество слайдов
    19
  • Слова
    геометрия
  • Конспект
    Отсутствует

Содержание

  • Презентация: Метод параллельного проектирования. Изображение пространственных фигур на плоскости
    Слайд 1

    Метод параллельного проектирования. Изображениепространственных фигурна плоскости.

    Геометрия, 10 класс. Воробьев Леонид Альбертович, г.Минск

  • Слайд 2

    Итак, мы приступили к изучению стереометрии – геометрии в пространстве. Как всегда нам необходимо уметь изображать геометрические фигуры, причем все чертежи мы по-прежнему выполняем на плоскости (на странице тетради, на доске и т.д.). Каким образом пространственную фигуру (например, куб) можно «уложить» в плоскость?

    Для решения этой задачи применяется метод параллельного проектирования. Выясним его суть на примере простейшей геометрической фигуры – точки. Итак, у нас есть геометрическая фигура в пространстве – точка А. А

  • Слайд 3

    А Выберем в пространстве произвольную плоскость  (её мы будем называть плоскостью проекций)  и любую прямую a (она задает направление параллельного проектирования). а

  • Слайд 4

    А  а Проведем через точку А прямую, параллельную прямой а. А’ Точка А’ пересечения этой прямой с плоскостью и есть проекция точки А на плоскость . Точку А ещё называют прообразом, а точку А’ – образом. Если А, то А’ совпадает с А.

  • Слайд 5

    Рассматривая любую геометрическую фигуру как множество точек, можно построить в заданной плоскости проекцию данной фигуры. Таким образом можно получить изображение (или «проекцию») любой плоской или пространственной фигурына плоскости (см.рис.).

    а  Наглядным примером параллельного проектирования является отбрасываемая любым объектом(прообраз) в пространстве тень(образ) от солнечных лучей(направление параллельного проектирования) на Земле(плоскость проекций).

  • Слайд 6

    Примечание 1. При параллельном проектировании не выбирают направление параллельного проектирования параллельно плоскости проекции (самостоятельно обоснуйте почему). А а 

  • Слайд 7

    Примечание 2. При параллельном проектировании плоских фигур не выбирают направление параллельного проектирования параллельно плоскости, которой принадлежит эта плоская фигура, т.к. получающаяся при этом проекция не отражает свойства данной плоской фигуры. А а  B C А’ B’ C’

  • Слайд 8

    Примечание 3. Если направление параллельного проектирования перпендикулярно плоскости проекций, то такое параллельное проектирование называется ортогональным(прямоугольным) проектированием. А а  B C А’ B’ C’

  • Слайд 9

    Примечание 4. Если плоскость проекций и плоскость, в которой лежит данная фигура параллельны (||(АВС)), то получающееся при этом изображение… А а  B C А’ B’ C’ …правильно – равно прообразу!

  • Слайд 10

    Параллельное проектирование обладает свойствами: 1) параллельность прямых (отрезков, лучей) сохраняется;  а A D C B A’ D’ C’ B’

  • Слайд 11

    2) отношение длин отрезков, лежащих на параллельных или на одной прямой сохраняется; Параллельное проектирование обладает свойствами: параллельность прямых (отрезков, лучей) сохраняется;  а A D C B A’ D’ C’ B’ Если, например, АВ=2CD, то А’В’=2C’D’ или М М’

  • Слайд 12

    Параллельное проектирование обладает свойствами: параллельность прямых (отрезков, лучей) сохраняется;  а A B A’ B’ 3) Линейные размеры плоских фигур(длины отрезков, величины углов) не сохраняются (исключение – см. примечание 4). 2) отношение длин отрезков, лежащих на параллельных или на одной прямой сохраняется; β β’ C C’

  • Слайд 13

     Итак, построим изображение куба: Далее разберем примеры изображения некоторых плоских фигур…

  • Слайд 14

    Фигура в пространстве Её изображение на плоскости Произвольный треугольник Произвольный треугольник Прямоугольный треугольник Произвольный треугольник Равнобедренный треугольник Произвольный треугольник

  • Слайд 15

    Фигура в пространстве Её изображение на плоскости Равносторонний треугольник Произвольный треугольник Параллелограмм Произвольный параллелограмм Прямоугольник Произвольный параллелограмм

  • Слайд 16

    Фигура в пространстве Её изображение на плоскости Квадрат Произвольный параллелограмм Трапеция Произвольная трапеция Произвольный параллелограмм Ромб

  • Слайд 17

    Фигура в пространстве Её изображение на плоскости Равнобокая трапеция Произвольная трапеция Прямоугольная трапеция Произвольная трапеция Круг (окружность) Овал (эллипс)

  • Слайд 18

    A B C D E F O Разберемся, как построить изображение правильного шестиугольника. F A B C D E Разобьем правильный шестиугольник на три части: прямоугольник FBCE и два равнобедренных треугольника ΔFAB и ΔCDE. Построим вначале изображение прямоугольника FBCE – произвольный параллелограмм FBCE. Осталось найти местоположение двух оставшихся вершин – точек A и D. Вспомнив свойства правильного шестиугольника, заметим, что: 1) эти вершины лежат на прямой, проходящей через центр прямоугольника и параллельной сторонам BC и FE; 2) OK=KD и ON=NA. K N Значит, 1) находим на изображении точку О и проводим через неё прямую, параллельную BC и FE, получив при этом точки N и K; O N K 2) откладываем от точек N и K от центра О на прямой такие же отрезки – в итоге получаем две оставшиеся вершины правильного шестиугольника A и D.

  • Слайд 19

    A B C D E Попробуйте самостоятельно построить изображение правильного пятиугольника. Подсказка: разбейте фигуру на две части – равнобокую трапецию и равнобедренный треугольник, а затем воспользуйтесь некоторыми свойствами этих фигур и ,конечно же, свойствами параллельного проектирования. A C D E Решение. Просмотрите ход построения… B

Посмотреть все слайды

Сообщить об ошибке