Содержание
-
МНОГОГРАННИКИ
-
ПОНЯТИЕ МНОГОГРАННИКА
-
Многогранником называется фигура, состоящая из конечного числа плоских многоугольников (называемых гранями многогранника), расположенных в пространстве.
-
1) любая сторона каждой из этих граней является стороной еще одной и только одной грани (называемой смежной с первой гранью); 2) для любых двух граней A и B можно указать такую цепочку граней а1, а2, …, аN, что грань а смежна с гранью а1, грань а1 смежна с а2, …, грань аN смежно с гранью В ; 3) если грани А и В имеют общую вершину М, то выбор граней а1, а2, …, аN, о которых говорится в предыдущем пункте, можно осуществить так, чтобы все они имели ту же вершину М.
-
ПРИЗМА И ЕЕ ПЛОЩАДЬ ПОВЕРХНОСТИ
-
Прямая призма, основанием которой служит правильный многоугольник, называется правильной призмой.
-
Теорема. Площадь боковой поверхности призмы равна произведению периметра ее перпендикулярного сечения и длины бокового ребра.
-
Следствие. Площадь боковой поверхности прямой призмы равна произведению периметра ее основания и высоты. Действительно, у прямой призмы основание можно рассматривать как перпендикулярное сечение, а боковое ребро есть высота.
-
ПАРАЛЛЕЛЕПИПЕД. КУБ.
-
Параллелепипед (от греч.παράλλος — параллельный и греч.επιπεδον — плоскость) — призма, основанием которой служит параллелограмм. В соответствии с определением параллелепипед — это четырёхугольная призма, все грани которой — параллелограммы. Параллелепипеды, как и призмы, могут быть прямыми и наклонными.
-
Из определений следует: - у наклонного параллелепипеда все грани - параллелограммы; - у прямого параллелепипеда все грани - прямоугольники. В любом параллелепипеде - противоположные грани равны и параллельны; - диагонали пересекаются в одной точке и делятся в ней пополам. Грани параллелепипеда, не имеющие общих вершин, называются противолежащими.
-
Куб или гексаэдр — правильный многогранник, каждая грань которого представляет собой квадрат. Частный случай параллелепипеда и призмы.
-
ПИРАМИДА И ЕЕ ПЛОЩАДЬ ПОВЕРХНОСТИ
-
Площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему пирамиды.
-
Пирамида называется правильной, если в её основании лежит правильный многоугольник, а высота, опущенная из вершины пирамиды на основание, пересекает его в центре этого многоугольника (иначе говоря, вершина пирамиды проектируется в центр основания).
-
СВОЙСТВА
Свойство 1 В правильной n-угольной пирамиде все боковые ребра равны между собой.Из равенства ребер следует и равенство боковых граней. Треугольники АВМ, ВСМ и АСМ равны по трем сторонам.
-
Свойство 2 Все боковые грани правильной n-угольной пирамиды суть равные равнобедренные треугольники, поэтому все плоские углы при вершине равны, все плоские углы при основании равны.Из равенства прямоугольных треугольников ОРМ, ОТМ и ОКМ (ОТ=ОР=ОК как радиусы вписанной окружности; МО - общая) следует равенство всех двугранных углов при основании пирамиды РОРМ=РОТМ=РОКМ
-
Свойство 3 В правильной n-угольной пирамиде все двугранные углы при основании равны.Нужно отметить случай, когда одно из боковых ребер пирамиды перпендикулярно основанию. Такая пирамида называется прямоугольной.
-
Апофема - высота боковой грани пирамиды, проведенная из вершины на ребро основания.
-
ПРАВИЛЬНЫЕ МНОГОГРАННИКИ
-
Правильным многогранником называется такой выпуклый многогранник, все грани которого являются одинаковыми правильными многоугольниками и все двугранные углы попарно равны
-
-
Правильный тетраэдр составлен из четырех равносторонних треугольников. Каждая его вершина является вершиной трех треугольников. Следовательно, сумма плоских углов при каждой вершине равна 180°.
-
Правильный октаэдр составлен из восьми равносторонних треугольников. Каждая вершина октаэдра является вершиной четырех треугольников. Следовательно, сумма плоских углов при каждой вершине равна 240°.
-
Правильный икосаэдр составлен из двадцати равносторонних треугольников. Каждая вершина икосаэдра является вершиной пяти треугольников. Следовательно, сумма плоских углов при каждой вершине равна 270°.
-
Правильный додекаэдр составлен из двенадцати правильных пятиугольников. Каждая вершина додекаэдра является вершиной трех правильных пятиугольников. Следовательно, сумма плоских углов при каждой вершине равна 324°.
-
Куб составлен из шести квадратов. Каждая вершина куба является вершиной трех квадратов. Следовательно, сумма плоских углов при каждой вершине равна 270°.
-
Других видов правильных многогрнников, кроме перечисленных пяти, нет.
Нет комментариев для данной презентации
Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.