Содержание
-
Нахождение суммы n первых членов геометрической прогрессии.
-
В одном древнегреческом папирусе приводится задача: «Имеется 7 домов, в каждом по 7 кошек, каждая кошка съедает 7 мышей, каждая мышь съедает 7 колосьев, каждый из которых, если посеять зерно, даёт 7 мер зерна. Нужно подсчитать сумму числа домов, кошек, мышей, колосьев и мер зерна.» Как велики числа этого ряда?
-
Карл Гаусс (1777-1855)
Его математическое дарование проявилось уже в детстве. Рассказывают, что в 3-ёхлетнем возрасте он удивил окружающих, поправив расчёты своего отца с каменщиками. Великий немецкий учёный математик, астроном, физик и геодезист.
-
Рассказывают, что в начальной школе, где учился мальчик Карл Гаусс, учитель, чтобы занять класс на продолжительное время самостоятельной работой, дал детям задание- Вычислить сумму всех натуральных чисел от 1 до 100. Но маленький Гаусс это задание выполнил моментально.
-
В старинной «Арифметике» Магницкого ( которой в 2003 году исполнилось 300 лет) приведена следующая задача: Некто продал лошадь за 156 рублей. Но покупатель приобретая лошадь, раздумал её покупать и возвратил продавцу, говоря: - Нет мне расчёта покупать за эту цену лошадь, которая таких денег не стоит. Тогда продавец предложил другие условия: -Если по-твоему, цена лошади высока, то купи только её подковные гвозди. Лошадь же тогда получишь в придачу бесплатно. Гвоздей в подкове 6. За 1-ый гвоздь дай мне всего1/4 копейки, за третий 1 копейку и т.д. Покупатель, соблазненный низкой ценой и желая даром получить лошадь, принял условия продавца, рассчитывая, что за гвозди придётся уплатить не более 10 рублей. Так ли это?
-
Легенда о создателе шахмат:
По преданию, индийский принц Сирам, восхищённый игрой, призвал к себе её создателя, учёного Сету, и сказал: -Я желаю достойно наградить тебя за прекрасную игру. Я достаточно богат, чтобы исполнить любое твоё желание. Сета попросил принца положить на первую клетку шахматной доски 1 зерно, на вторую 2 зерна, на третью 4 зерна и т.д. Создалась проблемная ситуация: смог ли принц Сирам выполнить желание Сеты?
-
18 446 744 073 709 615
18 квинтиллионов 446 квадриллионов 744 триллиона 73 биллиона (миллиарда) 709 миллионов 551 тысяча 615.
-
Первые представления об арифметической и геометрической прогрессиях были ещё у древних народов. В клинописных вавилонских табличках и египетских папирусах встречаются задачи на прогрессии и указания, как их решать. В древнеегипетском папирусе Ахмеса (ок. 2000 до н.э.) приводится такая задача: «Пусть тебе сказано: раздели 10 мер ячменя между 10 людьми так, чтобы разность мер ячменя, полученного каждым человеком и его соседом, равнялась меры».
-
Архимед ( III в. до н.э.) для нахождения площадей и объёмов фигур применял «анатомический метод», для чего ему потребовалось находить суммы членов некоторых последовательностей. Отдельные факты об арифметической и геометрической прогрессиях знали китайские и индийские учёные.
-
Термин «прогрессия» (от латинского progressio, что означает «движение вперёд») был введён римским автором Боэцием (VI в.) и понимался в более широком смысле, как бесконечная числовая последовательность. Названия «арифметическая» и «геометрическая» были перенесены на прогрессии из теории непрерывных пропорций, изучением которых занимались древние греки.
-
Формула суммы членов арифметической прогрессии была доказана древнегреческим учёным Диофантом (III в.). Формула суммы членов геометрической прогрессии дана в книге Евклида «Начала» (III в. до н.э.) Правило отыскания суммы членов произвольной прогрессии встречаются в «Книге абака» Л.Фибоначчи (1202). Общее правило для суммирования любой бесконечно убывающей геометрической прогрессии даёт Н.Шюке в книге «Наука о числах» (1484).
-
Спасибо за урок!
Нет комментариев для данной презентации
Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.