Содержание
-
Пирамиды
Подготовили ученицы 5 класса «А» Власова Анастасия и Шустикова Анастасия
-
Пирамида – многогранник, состав – ленный из угольника и треугольни – ков, при этом угольник считают ос – нованием пирамиды, а треугольники – боковыми гранями. Вершина пирамиды – общая вер – шина всех боковых граней. Боковые ребра – стороны боковых граней, не лежащие в основании пирамиды.
-
Например, OPSR - пирамида,O- вер- шина пирамиды, OP, OS, OR ее боковые ребра. Высота пирамиды – перпендикуляр, проведенный из вершины пирамиды к плоскости осно- вания.
-
Площадь полной поверхности пира - миды – это сумма всех ее граней. Площадь боковой поверхности пира- миды – это сумма площадей ее боко- вых граней. Тетраэдр – треугольная пирамида, все четыре грани которой – треу – гольники, и любая из них может быть принята за основание.
-
Правильные пирамиды
Правильная пирамида – пирами- да, основание которой – правиль– ный многоугольник, а отрезок соединяющий вершину пирамиды с центром основания, является ее высотой.
-
Свойства правильной пирамиды:
1) Боковые рёбра правильной пирамиды равны. 2)Боковые грани правильной пирамиды являются равными равнобедренными треу- гольниками.
-
Апофема
Апофема – высота боковой грани правильной пирамиды, проведен- ная из вершин пирамиды. Теорема о площади боковой по- верхности правильной пирами- ды: площадь боковой поверхности правильной пирамиды равна поло- вине произведения периметра осно- вания на апофему.
-
Усеченная пирамида
Усеченная пирамида – это много – гранник, полученный в результате пересечения пирамиды плоскостью, параллельной плоскости основания, точнее та часть пирамиды, которая находится между плоскостями сече – ния и основания пирамиды.
-
Нижнее и верхнее основания усеченной пирамиды – это грани, лежащие в пара – лельных плоскостях. Основания усе- ченной пирамиды являются подоб – ными многоугольниками. Боковые грани усеченной пирамиды четырехугольники, которые соеди - няют верхнее и нижнее основания. Боковые грани усеченной пирами- ды - трапеции.
-
Высота усеченной пирамиды это перпендикуляр, проведенный из произвольной точки одногооснования к плоскости другого основания. Правильная усеченная пира- мида- усеченная пирамида, ос- нования которой являются пра- вильными многоугольниками, а боковые грани- равнобедренными трапеицями. Высоты боковых гра- ней правильной усеченной пирами- ды называют апофемами.
-
Площадь боковой поверхности усеченной пирамиды- это сумма площадей ее боковых граней. Теорема о площади боковой поверхности правильной усеченной пирамиды: площадь боковой поверхности усеченной пирамиды равна произведению полусуммы периметров оснований на апофему.
-
КОНЕЦ КОНЕЦ
Нет комментариев для данной презентации
Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.