Презентация на тему "Полуправильные многоугольники"

Презентация: Полуправильные многоугольники
1 из 17
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
0.0
0 оценок

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Интересует тема "Полуправильные многоугольники"? Лучшая powerpoint презентация на эту тему представлена здесь! Данная презентация состоит из 17 слайдов. Также представлены другие презентации по математике. Скачивайте бесплатно.

  • Формат
    pptx (powerpoint)
  • Количество слайдов
    17
  • Слова
    математика
  • Конспект
    Отсутствует

Содержание

  • Презентация: Полуправильные многоугольники
    Слайд 1

    Полуправильные многоугольники Выполнила ученица группы ПК-22 Чепкасова Вера Васильевна Проверила Чепуштанова Вера Алексеевна

  • Слайд 2

    Полуправильные многогранники (Тела Архимеда).

    Если гранями правильного многогранника или Платоновых тел являются однотипные правильные многоугольники (треугольники, квадраты и пентагоны), то гранями полуправильных многогранников, являются правильные многоугольники разных типов. К полуправильным многогранникам относят n-угольные призмы, все ребра которых равны, а также антипризмы. Кроме этих двух бесконечных серий полуправильных многогранников имеется 13 полуправильных многогранников, которые впервые открыл и описал Архимед, - это тела Архимеда.

  • Слайд 3

    Усеченный тетраэдр

    Если срезать углы тетраэдра плоскостями, каждая из которых отсекает третью часть его ребер, выходящих из одной вершины, то получим усеченный тетраэдр, имеющий 8 граней. Из них 4 – правильные шестиугольники и 4 – правильные треугольники.

  • Слайд 4

    Усеченный октаэдр

    Если указанным способом срезать вершины октаэдра, то получится усеченный октаэдр, имеющий 14 граней. 6 квадратов и 8 гексагонов.

  • Слайд 5

    Усеченный куб

    Усеченный куб имеет 14 граней. Из них 8 – правильные треугольники и 6 – правильные восьмиугольники (октагоны).

  • Слайд 6

    Усеченный икосаэдр

    Усеченный икосаэдр имеет 32 грани. Из них 12 – правильные пятиугольники (пентагоны) и 20 – правильные шестиугольники (гексагоны). Поверхность футбольного мяча изготавливают в форме поверхности усеченного икосаэдра

  • Слайд 7

    Усеченный додекаэдр

    Усеченный додекаэдр имеет 32 грани. Из них 20 – правильные треугольники и 12 -правильные десятиугольники (декадоны).

  • Слайд 8

    Икосододекаэдр

    Если в додекаэдре отсекающие плоскости провести через середины ребер, выходящих из одной вершины, то получим икосододекаэдр. У него 20 граней – правильные треугольники и 12 – правильные пятиугольники (пентагоны), то есть все грани икосаэдра и додекаэдра.

  • Слайд 9

    Ромбокубооктаэдр

    Его поверхность состоит из граней куба и октаэдра, к которым добавлено еще 12 квадратов. Итого ромбокубооктаэдр имеет 8 треугольников и 18 квадратов.

  • Слайд 10

    Кубооктаэдр

    Кубооктаэдр имеет 14 граней. Из них 8 треугольников и 6 квадратов.

  • Слайд 11

    Ромбоикосододекаэдр

    Поверхность ромбоикосододекаэдра состоит из граней икосаэдра, додекаэдра и еще 30 квадратов. Итого он имеет 62 грани. Из них 20 треугольников, 30 квадратов и 12 пентагонов.

  • Слайд 12

    «Курносый» куб

    Поверхность курносого куба состоит из граней куба окруженных правильными треугольниками. У него 38 граней. Из них 32 треугольника и 6 квадратов.

  • Слайд 13

    «Курносый» додекаэдр

    Поверхность курносого додекаэдра из граней додекаэдра окруженных правильными треугольниками. 85 треугольников и 12 пентагонов.

  • Слайд 14

    Усеченный кубооктаэдр

    Поверхность усеченного кубооктаэдра состоит из 12 квадратов, 8 правильных шестиугольников (гексагонов) и 6 правильных восьмиугольников (октагонов).

  • Слайд 15

    Усеченный икосододекаэдр

    Поверхность усеченного икосододекаэдра состоит из 30 квадратов, 20 правильных шестиугольников (гексагонов) и 12 правильных десятиугольников (декагонов).

  • Слайд 16

    Новое «архимедово тело» -псевдоромбокубооктаэдр

    Получается из ромбокубооктаэдра поворотом его верхней восьмиугольной «крышки» на 45 градусов по оси – открыл Миллер в 1930 г. и независимо от него В. Г. Ашкинузе и Л. Есаулова.

  • Слайд 17

    Кроме «архимедовых тел» к полуправильным многогранникам относятся все правильные n-угольные призмы, все ребра которых равны. К полуправильным многогранникам относятся также все так называемые антипризмы.

Посмотреть все слайды

Сообщить об ошибке