Содержание
-
Правильные многоугольники в природе.Паркеты из правильных многоугольников.
Выполнил: Забавин Вадим. 9 «Б» класс
-
Многоугольники в природе.
В природе часто встречаются разнообразные правильные многоугольники. Это могут быть треугольники, четырехугольнике, пятиугольники и т.д. Виртуозно компонуя их, природа создала бесконечное множество сложных, удивительно красивых, легких, прочных и экономичных конструкций.
-
Примеры многоугольников в природе.
Примерами правильных многоугольников в природе могут служить: Пчелиные соты, снежинки и другие. Рассмотрим их по подробней…
-
Пчелиные соты.
Пчелиные соты состоят из шестиугольников. Но почему пчелы «выбрали» для ячеек на сотах именно форму правильных шестиугольников? Из правильных многоугольников с одинаковой площадью наименьший периметр у правильных шестиугольников. При такой «математической» работе пчёлы экономят 2% воска. Количество воска сэкономленного при постройке 54 ячеек, может быть использовано для постройки одной такой же ячейки. Стало быть, мудрые пчёлы экономят воск и время для постройки сот.
-
Снежинки.
Снежинки могут иметь форму треугольника или шестиугольника. Но почему только эти две формы? Так получилось, что молекула воды состоит из трех частиц – двух атомов водорода и одного атома кислорода. Поэтому при переходе частицы воды из жидкого состояния в твердое, ее молекула соединяется с другими молекулами воды, и образует только трех – или шестиугольную фигуру.
-
Сложные молекулы углерода.
Также примером многоугольников в природе могут служить некоторые сложные молекулы углерода.
-
Здание Пентагона.
А вот еще один пример многоугольников. Но уже созданный не природой, а человеком. Это здание Пентагона. Он имеет форму пятиугольника. Но почему здание Пентагона имеет такую форму? Пятиугольную форму здания подсказал план местности, когда создавались эскизы проекта. В том месте проходило несколько дорог, которые пересекались под углом 108 градусов, а это и есть угол построения пятиугольника. Поэтому такая форма органично вписывалась в транспортную инфраструктуру, и проект был утвержден.
-
Здание Пентагона
-
Паркеты из правильных многоугольников
В математике паркетом называют «замощение» плоскости повторяющимися фигурами без пропусков и перекрытий. Простейшие паркеты были открыты пифагорейцами около 2500 лет тому назад. Они установили, что вокруг одной точки могут лежать либо шесть правильных многоугольников, либо четыре квадрата, либо три правильных шестиугольника.
-
Конец
Нет комментариев для данной презентации
Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.