Презентация на тему "презентация 10 класс"

Презентация: презентация 10 класс
Включить эффекты
1 из 10
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
0.0
0 оценок

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Посмотреть и скачать презентацию по теме "презентация 10 класс" по математике, включающую в себя 10 слайдов. Скачать файл презентации 0.32 Мб. Для учеников 10 класса. Большой выбор учебных powerpoint презентаций по математике

  • Формат
    pptx (powerpoint)
  • Количество слайдов
    10
  • Аудитория
    10 класс
  • Слова
    геометрия
  • Конспект
    Отсутствует

Содержание

  • Презентация: презентация 10 класс
    Слайд 1

    Теорема о прямой,перпендикулярной к плоскости.

  • Слайд 2
  • Слайд 3

    Доказательство Пусть нам данапрямая a и точка М. Докажем, что существует плоскость γ, которая проходит через точку М и которая ┴ прямой а.Через прямую а проведем плоскости α и β так, что точка М  плоскости α. Плоскости α и β пересекаются по прямой а. В плоскости α через точку М проведем перпендикуляр MN (или р) к прямой а, . В плоскости β из точки N восстановим перпендикуляр q к прямой а. Прямые р и q пересекаются, пусть через них проходит плоскость γ. Получаем, что прямая а перпендикулярна двум пересекающимся прямым р и q из плоскости γ. Значит, по признаку перпендикулярности прямой и плоскости, прямая а перпендикулярна плоскости γ.

    Задача 133

  • Слайд 4

    Через любую точку пространства проходит прямая, перпендикулярная к данной плоскости, и притом только одна.

  • Слайд 5

    Доказательство. Пусть дана плоскость α и точка М (см. рис. 2). Нужно доказать, что через точку М проходит единственная прямая с, перпендикулярная плоскости α. Проведем прямую а в плоскости α (см. рис. 3). Согласно доказанному выше утверждению, через точку М можно провести плоскость γ перпендикулярную прямой а. Пусть прямая b– линия пересечения плоскостей α и γ.

  • Слайд 6

    В плоскости γ через точку М проведем прямую с, перпендикулярную прямой b. Прямая с перпендикулярна b по построению, прямая с перпендикулярна а (так как прямая а перпендикулярна плоскости γ, а значит, и прямой с, лежащей в плоскости γ). Получаем, что прямая с перпендикулярна двум пересекающимся прямым из плоскости α. Значит, по признаку перпендикулярности прямой и плоскости, прямая с перпендикулярна плоскости α. Докажем, что такая прямая с единственная. Предположим, что существует прямая с1, проходящая через точку М и перпендикулярная плоскости α. Получаем, что прямые с и с1 перпендикулярны плоскости α. Значит, прямые с и с1 параллельны. Но по построению прямые с и с1 пересекаются в точке М. Получили противоречие. Значит, существует единственная прямая, проходящая через точку М и перпендикулярная плоскости α, что и требовалось доказать.

  • Слайд 7
  • Слайд 8
  • Слайд 9
  • Слайд 10
Посмотреть все слайды

Сообщить об ошибке