Содержание
-
Решение системы линейных уравнений методом Крамера Цель работы: -изучить решение систем линейных уравнений с помощью методом Крамера ; -научиться решать системы двух линейных уравнений с двумя неизвестными и трех линейных уравнений с тремя неизвестными, используя метод Крамера.
-
Системы линейных уравнений Уравнение называется линейным, если оно содержит переменные только в первой степени и не содержит произведений переменных. Система m линейных уравнений с n переменными:
-
Числа называются коэффициентами при переменных, а свободными членами. Совокупность чисел называется решением системы линейных уравнений, если при подстановке их вместо переменных во все уравнения они обращаются в верные равенства.
-
В школьном курсе рассматриваются способ подстановки и способ сложения. В курсе высшей математике решают методом Крамера ,методом Гаусса и с помощью обратной матрицы. Рассмотрим решение систем линейных уравнений методом Крамера
-
Сведения из истории Крамер является одним из создателей линейной алгебры. Одной из самых известных его работ является «Введение в анализ алгебраических кривых», опубликованный на французском языке в 1750 году. В ней Крамер строит систему линейных уравнений и решает её с помощью алгоритма, названного позже его именем – метод Крамера.
-
Габриэль Крамер родился 31 июля 1704 года в Женеве (Швейцария) в семье врача. Уже в детстве он опережал своих сверстников в интеллектуальном развитии и демонстрировал завидные способности в области математики.
-
В 18 лет он успешно защитил диссертацию. Через 2 года Крамер выставил свою кандидатуру на должность преподавателя в Женевском университете. Юноша так понравился магистрату, что специально для него и ещё одного одного кандидата на место преподавателя была учреждена отдельная кафедра математики, где Крамер и работал в последующие годы.
-
Учёный много путешествовал по Европе, перенимая опыт у знаменитых математиков своего времени – Иоганна Бернулли и Эйлера в Базеле, Галлея и де Муавра в Лондоне, Мопертюи и Клеро в Париже и других. Со многими из них он продолжал переписываться всю жизнь. В 1729 году Крамер возобновляет преподавательскую работу в Женевском университете. В это время он участвует в конкурсе Парижской Академии и занимает второе место.
-
Талантливый учёный написал множество статей на самые разные темы: геометрия, история, математика, философия. В 1730 году он опубликовал труд по небесной механике.
-
В 1740-е гг. Иоганн Бернулли поручает Крамеру подготовить к печати сборник своих работ. В 1742 году Крамер публикует сборник в 4-х томах. В 1744 году он выпускает посмертный сборник работ Якоба Бернулли (брата Иоганна Бернулли), а также двухтомник переписки Лейбница с Иоганном Бернулли. Эти работы вызвали большой интерес со стороны учёных всего мира. Габриэль Крамер скончался 4 января 1752 года во Франции
-
Теорема Крамера. Если определитель системы отличен от нуля, то система линейных уравнений имеет одно единственное решение, причём неизвестное равно отношению определителей. В знаменателе – определитель системы, а в числителе – определитель, полученный из определителя системы путём замены коэффициентов при этом неизвестном свободными членами. Эта теорема имеет место для системы линейных уравнений любого порядка. Решение системы линейных уравнений методом Крамера
-
Дана система
-
Формулы Крамера ………….
-
-
Заменяя столбец с коэффициентами соответствующей переменной свободными членами:
-
Решение системы двух линейных уравнений с двумя неизвестными методом Крамера Ответ: (1;-1) 1) 2) Фирма состоит из двух отделений, суммарная величина прибыли которых в минувшем году составила 12 млн усл. ед. На этот год запланировано увеличение прибыли первого отделения на 70%, второго – на 40%. В результате суммарная прибыль должна вырасти в 1,5 раза. Какова величина прибыли каждого из отделений: a) в минувшем году; б) в этом году? Решение. Пусть x и y – прибыли первого и второго отделений в минувшем году. Тогда условие задачи можно записать в виде системы: Решив систему, получим x = 4, y = 8. Ответ: а) прибыль в минувшем году первого отделения - 4 млн усл. ед., второго - 8 усл.ед. б) прибыль в этом году первого отделения 1,7. 4 = 6,8 млн усл. ед., второго 1,4. 8 = 11,2 млн усл. ед.
-
1) система линейных уравнений имеет единственное решение (система совместна и определённа) Условия: При решении системы уравнений могут встретиться три случая:
-
2) система линейных уравнений имеет бесчисленное множество решений (система совместна и неопределённа) Условия: т.е. коэффициенты при неизвестных и свободные члены пропорциональны
-
3) система линейных уравнений решений не имеет (система несовместна) Условия: Система называется несовместной, если у неё нет ни одного решения, и совместной, если она имеет хотя бы одно решение. Совместная система уравнений, имеющая только одно решение, называется определённой, а более одного – неопределённой.
-
Решение системы трех линейных уравнений с тремя двумя неизвестными методом Крамера Решение. Находим определители системы:
-
-
Ответ: (1; 0; -1) .
-
Решите системы:
Нет комментариев для данной презентации
Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.