Содержание
- 
              
            
 Проект Семенова Алексея Витальевича Тема: « Степенные ряды. Область сходимости степенногоряда» Димитровград 2008г. 
- 
              
            
 Содержание: Определение степенного ряда Примеры степенных рядов Область сходимости степенного ряда. 4. Равномерная сходимость функционального ряда. 5. Нахождение радиуса сходимости ряда. 6. Список использованной литературы. 
- 
              
            
 Степенной ряд и его область сходимости. Определение:Степенным рядом называется функциональный ряд вида: где постоянные вещественные числа, называемые коэффициентами степенного ряда. 
- 
              
            
 Любой степенной ряд сходится при х=0, т.к. в этой точке все члены ряда (1), кроме первого, - нули. Есть степенные ряды вида (1), которые сходятся лишь в точке х=0; такие ряды относят к рядам первого класса. Например, ряд сходится лишь в точке х=0; в любой другой точке х≠0 этот ряд расходится. Действительно, при каждом х≠0 из числовой оси имеем числовой ряд. Исследуем его на сходимость. Образуем ряд Применив к последнему ряду признак Даламбера, получим: при всех х≠0. Следовательно, ряд (3), значит, и ряд (2) расходятся при всех х≠0. (1) (2) (3) 
- 
              
            
 Еще в середине 60-х годов XVII века, получив формулу бинома для натурального показателя, Ньютон сразу же приступил к выяснению того, действительна ли она для отрицательных и дробных показателей. В частности, он проверил ее для показателей В первом случае он пришел к ряду , во втором к ряду Здесь, как при любом рациональном m, сумма биномиального ряда (при ) дает арифметическое значение радикала. Получение биномиального ряда 
- 
              
            Получение биномиального рядаПри имеем: Этот ряд сходится при (). Однако, результаты Ньютона в этом, как и в других вопросах анализа, были, как известно, опубликованы намного позже их получения автором. Так называемый биномиальный ряд, связанный с именем Ньютона, имеет следующий вид: При этом m – любое, отличное от нуля вещественное число. Этот ряд сходится при , т.е. при Доказательство разложения для любого вещественногоm , было дано Эйлером. 
- 
              
            Способ разложения в ряд, предложенный НьютономОдним из способов разложения в ряды, применявшихся Ньютоном, было обращение ряда; например, исходя из логарифмического ряда в котором x разложен по степеням y, он устанавливает обратное разложение y по степеням x, получая: или , который представляет собой показательный ряд, он сходится для любого х. 
- 
              
            
 Заменив в ряде хна–х2, найдем: Этот ряд Ньютон проинтегрировал почленно, получив: Ряд сходится на отрезке 
- 
              
            Область сходимости степенного рядаТеорема. Для всякого степенного ряда существует такое число , что степенной ряд сходится при и расходится при Таким образом, область сходимости степенного ряда есть круг с центром в точке а радиуса R, который называется кругом сходимости. Число R называется радиусом сходимости ряда. 
- 
              
            
 Отметим еще, что общего ответа на вопрос о сходимости степенного ряда на границе круга сходимости, то есть при , дать нельзя. В каждом конкретном случае этот вопрос надо рассматривать отдельно. Заметьте еще, что при R=0 степенной ряд сходится только в точке z=a; при R=+ степенной ряд сходится. 
- 
              
            Нахождение радиуса сходимости рядаВажнейшая характеристика степенного ряда – его радиус сходимости – находится одним из следующих способов. 1. Если существует , то . 2. Если существует , то . 3. Пусть . Тогда . 
- 
              
            
 ПРИМЕР . Определить интервал сходимости ряда и исследовать его на концах интервала: Решение. Т.к. степенной ряд по теореме Абеля сходится абсолютно в интервале сходимости, то рассмотрим ряд, составленный из абсолютных величин членов данного ряда Это ряд положительный, поэтому мы можем для его исследования применить признак Даламбера. , . Получили интервал сходимости данного ряда IxI 
- 
              
            Исследуем сходимость данного ряда на концах интервалаx= - 3подставим в данный ряд, получим .Полученный знакочередующийся ряд сходится по признаку Лейбница. Первое условие признака Лейбница выполняется, т.к. Второе условие признака Лейбница также выполняется, т.к. 
- 
              
            
 x= - 3подставим в исходный ряд, получим гармонический ряд, он расходится. Следовательно, областью сходимости данного ряда является промежуток . Ответ: или 
- 
              
            Краткая историческая справкаЛеонард Эйлер (1707-1783) Швейцарский математик и механик, академик Петербургской Академии наук, автор огромного количества научных открытий во всех областях математики. Эйлер первым применил средства математического анализа в теории чисел, положил начало топологии. 
- 
              
            Исаак Ньютон(1643 – 1727)В 1665 г. Исаак Ньютон окончил Кембриджский Университет и собирался начать работу там же, в его родном Тринити-колледже. Он открыл закон всемирного тяготения и приступил с его помощью к исследованию планет. Но чтобы исследовать и выражать законы физики, Ньютону приходилось заниматься и математикой. В Вулстропе Ньютон, решая задачи на проведение касательных к кривым, вычисляя площади криволинейных фигур, создает общий метод решения таких задач – метод флюксий (производных) и флюэнт, которые у Г.В. Лейбница назывались дифференциалами. Ньютон так же находит формулу для различных степеней суммы двух чисел, причем не ограничивается натуральными показателями и приходит к суммам бесконечных рядов чисел. Ньютон показал, как применять ряды в математических исследованиях. Работы Ньютона надолго опередили пути развития физики и математики. Закон всемирного тяготения постепенно осознавался как единый принцип, , позволяющий строить совершенную теорию движения небесных тел. Созданный им математический анализ открыл новую эпоху в математике. 
- 
              
            
 Список использованной литературы: И.И. Баврин, В.А. Матросов Общий курс высшей математики. 2. М.Я. Выгодский Справочник по высшей математике для ВУЗов. 3. Б.В. Соболь Практикум по высшей математике/ Ростов н/Д: Феникс, 2006,-640 с. 
 
                  
                 
                  
                 
                  
                 
                  
                 
                  
                 
                  
                 
                  
                 
                  
                 
                  
                 
                  
                 
                  
                 
                  
                 
                  
                 
                  
                 
                  
                 
                  
                 
                  
                 
               
               
               
               
               
               
               
               
               
               
               
               
               
               
               
               
               
   
   
   
   
   
   
   
   
  
Нет комментариев для данной презентации
Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.