Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.
Добавить свой комментарий
Аннотация к презентации
Презентация для 7 класса на тему "Свойства равнобедренного треугольника" по математике. Состоит из 15 слайдов. Размер файла 4.57 Мб. Каталог презентаций в формате powerpoint. Можно бесплатно скачать материал к себе на компьютер или смотреть его онлайн с анимацией.
Геометрия – это искусство хорошо рассуждать ...
Нильс Г. Абель
Слайд 3
Цели урока:
Создать условия для:
введения понятия равнобедренного треугольника, равностороннего треугольника;
рассмотреть свойства равнобедренного треугольника и показатьих применение на практике.
Слайд 4
С
А
В
Боковая сторона
Боковая сторона
Основание
АС=СВ – боковая сторона
АВ - основание
Слайд 5
1
2
3
4
5
Слайд 6
Слайд 7
В равнобедренном треугольнике углы при основании равны.
С
А
В
Угол А= углу В
Свойства равнобедренного треугольника.
Слайд 8
Дано: Доказательство: ∆АВС,
АС=СВ.
Доказать:
Слайд 9
Свойство медианы равнобедренного треугольника.
В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой.
Слайд 10
Признаки равнобедренного треугольника.
Если в треугольнике два угла равны, то он равнобедренный.
Угол А= углу В, то
∆ АВС – равнобедренный
А
С
В
Слайд 11
-
h
Если в треугольнике медиана является и высотой, то такой треугольник равнобедренный.
Т.к. СД – медиана, высота, то ∆АВС -равнобедренный
\
\
А
В
Д
С
Место работы: МБОУ Северная СОШ №13, Зимовниковский район,
Ростовская область
Должность: учитель
Предмет: геометрия 7
Учебник: Атанасян
Число:07.12.2007
Урок:13
Тема урока: Свойства равнобедренного треугольника.
Тип урока: Комбинированный урок
Цели урока: создать условия для:
введения понятия равнобедренного треугольника, равностороннего треугольника;
рассмотреть свойства равнобедренного треугольника и показать�их применение на практике.
Цели медиаобразования заключаются в формировании коммуникативных умений учащихся:
совершенствование познавательных действий по работе с дополнительными источниками информации (Интернет-ресурсами);
приобретение умений и навыков ведения диалога, рецензированию ответов одноклассников, организации своей деятельности в коллективной работе.
Методы обучения:
По источнику передачи и восприятия учебной информации:
словесные (объяснение нового материала, беседа, );
наглядные (иллюстрация, демонстрация);
По степени управления учебной работой:
учебная работа под руководством учителя;
самостоятельная работа учеников, работа с обучающим диском;
Оборудование: «Открытая математика 2,6. Планиметрия» (Физикон), медиапроектор, мультимедийная презентация по теме.
Эпиграф:
Геометрия – это искусство хорошо рассуждать ... Нильс Г. Абель
Ход урока
I Организационный момент.
Итак, какую тему мы продолжаем изучать?
II Актуализация опорных знаний учащихся.
1.Работа за доской по готовым чертежам – 2уч-ся
Дано:
∆АСВ - треугольник,
АС=ВС, А
<АСО=<ОСВ. О
Доказать: ∆АСО=∆ОСВ.
С В
Дано:
∆АОС,∆АОД- треуг.. �
ОС=ОД,
<АОС=<АОД.
Доказать: ∆АОС=∆АОД.
2. Выполнить практические задания: ( 2 уч-ся)
Назовите углы:
а) треугольника DEK, прилежащие к стороне ЕК;�б) треугольника MNP, прилежащие к стороне MN.
Назовите угол:
а) треугольника DEK, заключенный между сторонами DE и DK;
б) треугольника MNP, заключенный между сторонами NP и РМ.
Между какими сторонами:
а) треугольника DEK заключен угол К;
б) треугольника MNP заключен угол N?
∆ABC = ∆PSK.
Назовите равные стороны и равные углы в этих треугольниках.
3. В виртуальную лабораторию отправляются – 2 уч-ся
( Работа с диском : «Открытая математика 2,6. Планиметрия» (Физикон))
Исследовать поведение медианы, биссектрисы, высоты в равнобедренном треугольнике.
Исследовать поведение углов в равнобедренном треугольнике.
4. В Интернет кафе отправляются – 2 уч-ся
Познакомиться с равнобедренным треугольником.
5. Фронтальный опрос уч-ся с использованием презентации:
- Что называется треугольником?
- Назовите основные элементы треугольника.
- Как найти периметр треугольника?
- Назовите классификацию треугольников по углам.
- Назовите классификацию треугольников по сторонам.
- Что называется медианой треугольника?
- Что называется высотой треугольника?
- Что называется биссектрисой треугольника?
- Сколько высот имеет треугольник?
- Сколько медиан имеет треугольник?
- Сколько биссектрис имеет треугольник?
- Что называется теоремой?
Какие теоремы нам уже известны? (Свойство смежных углов и свойство вертикальных углов.)
Любая теорема состоит из условия и заключения. Как вы понимаете, что может означать словосочетание «условие теоремы», а что - «заключение теоремы»? (Условие - это уже известные факты, о которых говорится в теореме, а заключение - это то, что нужно получить, доказать.)
III
Итак, ребята сходили в Интернет кафе и получили информацию о равнобедренном треугольнике.
http://www.college.ru/mathemati
http://ru.wikipedia.org/
http://uztest.ru/abstracts/?idabstract=59
Ребята вернулись из виртуальной лаборатории и познакомят нас со своими исследованиями.
1.Исследовав, поведение углов в равнобедренном треугольнике, пришли к выводу, что в равнобедренном треугольнике углы при основании равны.
2. Исследовав, поведение медианы, биссектрисы, высоты в равнобедренном треугольнике, сделали вывод, медианы, биссектрисы, высоты в равнобедренном треугольнике пересекаются в одной точке.
IV. Постановка темы урока и целей.
Как вы думаете, что мы будем сегодня изучать? (Ответы учащихся)
Как вы сформулировали бы цели нашего урока? (Ответы учащихся)
V.Изучение нового материала.
Какой треугольник называется равнобедренным?
Как называются стороны равнобедренного треугольника?
Назовите равнобедренный треугольник?
С целью отработки этих навыков можно предложить следующие задания:
1) Дан равнобедренный треугольник CDE с основанием DE . Назовите боковые стороны, углы при основании, угол, противолежащий основанию этого треугольника.
2) В равнобедренном треугольнике МРК КМ = КР. Назовите боковые стороны, основание, угол, противолежащий основанию, и углы при основании этого треугольника.
Что нового мы узнали от ребят?
Мы познакомимся со свойствами равнобедренного треугольника.
Давайте ребята запишем дано.
О чем говорится в свойстве?
Какой нам дан треугольник?
Что надо доказать?
Учащиеся самостоятельно доказывают свойство.( 5 мин.)
Проверка доказательства с помощью презентации. (Учащиеся устно доказывают свойство.)
Рассмотрим второе свойство:
( самостоятельно доказать дома.)
Познакомимся с признаками равнобедренного треугольника.
VI. Закрепление материала.
Решение задач.
Решить задачу №116,117,120.
Самостоятельная работа обучающего характера. (Проверь себя и своего товарища)
VII. Итог урока.
- Что называется треугольником?
- Назовите основные элементы треугольника.
- Как найти периметр треугольника?
- Назовите классификацию треугольников по углам.
- Назовите классификацию треугольников по сторонам.
- Что называется медианой треугольника?
- Что называется высотой треугольника?
- Что называется биссектрисой треугольника?
- Сколько высот имеет треугольник?
- Сколько медиан имеет треугольник?
- Сколько биссектрис имеет треугольник?
- Сформулируйте свойства равнобедренного треугольника?
- Сформулируйте признаки равенства треугольников.
Реши задачу.
VIII. Домашнее задание.
§15-18, док-во св-ва2,
115,118,стр.47 в.7-9
�PAGE �
ФИО: Радченко Светлана Григорьевна
Место работы: МБОУ Северная СОШ №13, Зимовниковский район,
Ростовская область
Должность: учитель
Предмет: геометрия 7
Учебник: Атанасян
Число:07.12.2007
Урок:13
Тема урока: Свойства равнобедренного треугольника.
Тип урока: Комбинированный урок
Цели урока: создать условия для:
введения понятия равнобедренного треугольника, равностороннего треугольника;
рассмотреть свойства равнобедренного треугольника и показать�их применение на практике.
Цели медиаобразования заключаются в формировании коммуникативных умений учащихся:
совершенствование познавательных действий по работе с дополнительными источниками информации (Интернет-ресурсами);
приобретение умений и навыков ведения диалога, рецензированию ответов одноклассников, организации своей деятельности в коллективной работе.
Методы обучения:
По источнику передачи и восприятия учебной информации:
словесные (объяснение нового материала, беседа, );
наглядные (иллюстрация, демонстрация);
По степени управления учебной работой:
учебная работа под руководством учителя;
самостоятельная работа учеников, работа с обучающим диском;
Оборудование: «Открытая математика 2,6. Планиметрия» (Физикон), медиапроектор, мультимедийная презентация по теме.
Эпиграф:
Геометрия – это искусство хорошо рассуждать ... Нильс Г. Абель
Ход урока
I Организационный момент.
Итак, какую тему мы продолжаем изучать?
II Актуализация опорных знаний учащихся.
1.Работа за доской по готовым чертежам – 2уч-ся
Дано:
∆АСВ - треугольник,
АС=ВС, А
<АСО=<ОСВ. О
Доказать: ∆АСО=∆ОСВ.
С В
Дано:
∆АОС,∆АОД- треуг.. �
ОС=ОД,
<АОС=<АОД.
Доказать: ∆АОС=∆АОД.
2. Выполнить практические задания: ( 2 уч-ся)
Назовите углы:
а) треугольника DEK, прилежащие к стороне ЕК;�б) треугольника MNP, прилежащие к стороне MN.
Назовите угол:
а) треугольника DEK, заключенный между сторонами DE и DK;
б) треугольника MNP, заключенный между сторонами NP и РМ.
Между какими сторонами:
а) треугольника DEK заключен угол К;
б) треугольника MNP заключен угол N?
∆ABC = ∆PSK.
Назовите равные стороны и равные углы в этих треугольниках.
3. В виртуальную лабораторию отправляются – 2 уч-ся
( Работа с диском : «Открытая математика 2,6. Планиметрия» (Физикон))
Исследовать поведение медианы, биссектрисы, высоты в равнобедренном треугольнике.
Исследовать поведение углов в равнобедренном треугольнике.
4. В Интернет кафе отправляются – 2 уч-ся
Познакомиться с равнобедренным треугольником.
5. Фронтальный опрос уч-ся с использованием презентации:
- Что называется треугольником?
- Назовите основные элементы треугольника.
- Как найти периметр треугольника?
- Назовите классификацию треугольников по углам.
- Назовите классификацию треугольников по сторонам.
- Что называется медианой треугольника?
- Что называется высотой треугольника?
- Что называется биссектрисой треугольника?
- Сколько высот имеет треугольник?
- Сколько медиан имеет треугольник?
- Сколько биссектрис имеет треугольник?
- Что называется теоремой?
Какие теоремы нам уже известны? (Свойство смежных углов и свойство вертикальных углов.)
Любая теорема состоит из условия и заключения. Как вы понимаете, что может означать словосочетание «условие теоремы», а что - «заключение теоремы»? (Условие - это уже известные факты, о которых говорится в теореме, а заключение - это то, что нужно получить, доказать.)
III
Итак, ребята сходили в Интернет кафе и получили информацию о равнобедренном треугольнике.
http://www.college.ru/mathemati
http://ru.wikipedia.org/
http://uztest.ru/abstracts/?idabstract=59
Ребята вернулись из виртуальной лаборатории и познакомят нас со своими исследованиями.
1.Исследовав, поведение углов в равнобедренном треугольнике, пришли к выводу, что в равнобедренном треугольнике углы при основании равны.
2. Исследовав, поведение медианы, биссектрисы, высоты в равнобедренном треугольнике, сделали вывод, медианы, биссектрисы, высоты в равнобедренном треугольнике пересекаются в одной точке.
IV. Постановка темы урока и целей.
Как вы думаете, что мы будем сегодня изучать? (Ответы учащихся)
Как вы сформулировали бы цели нашего урока? (Ответы учащихся)
V.Изучение нового материала.
Какой треугольник называется равнобедренным?
Как называются стороны равнобедренного треугольника?
Назовите равнобедренный треугольник?
С целью отработки этих навыков можно предложить следующие задания:
1) Дан равнобедренный треугольник CDE с основанием DE . Назовите боковые стороны, углы при основании, угол, противолежащий основанию этого треугольника.
2) В равнобедренном треугольнике МРК КМ = КР. Назовите боковые стороны, основание, угол, противолежащий основанию, и углы при основании этого треугольника.
Что нового мы узнали от ребят?
Мы познакомимся со свойствами равнобедренного треугольника.
Давайте ребята запишем дано.
О чем говорится в свойстве?
Какой нам дан треугольник?
Что надо доказать?
Учащиеся самостоятельно доказывают свойство.( 5 мин.)
Проверка доказательства с помощью презентации. (Учащиеся устно доказывают свойство.)
Рассмотрим второе свойство:
( самостоятельно доказать дома.)
Познакомимся с признаками равнобедренного треугольника.
VI. Закрепление материала.
Решение задач.
Решить задачу №116,117,120.
Самостоятельная работа обучающего характера. (Проверь себя и своего товарища)
VII. Итог урока.
- Что называется треугольником?
- Назовите основные элементы треугольника.
- Как найти периметр треугольника?
- Назовите классификацию треугольников по углам.
- Назовите классификацию треугольников по сторонам.
- Что называется медианой треугольника?
- Что называется высотой треугольника?
- Что называется биссектрисой треугольника?
- Сколько высот имеет треугольник?
- Сколько медиан имеет треугольник?
- Сколько биссектрис имеет треугольник?
- Сформулируйте свойства равнобедренного треугольника?
Нет комментариев для данной презентации
Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.