Презентация на тему "Тетраэдр" 10 класс

Презентация: Тетраэдр
Включить эффекты
1 из 17
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
0.0
0 оценок

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Интересует тема "Тетраэдр"? Лучшая powerpoint презентация на эту тему представлена здесь! Данная презентация состоит из 17 слайдов. Также представлены другие презентации по математике для 10 класса. Скачивайте бесплатно.

  • Формат
    pptx (powerpoint)
  • Количество слайдов
    17
  • Аудитория
    10 класс
  • Слова
    геометрия
  • Конспект
    Отсутствует

Содержание

  • Презентация: Тетраэдр
    Слайд 1

    Тетраэдр

    МБОУ «Авиловская СОШ» Учитель математики Ткаченко И.А.

  • Слайд 2

    Понятие тетраэдра

    Пирамида, в основании которой лежит треугольник, называется треугольной пирамидой или тетраэдром. Слово «тетраэдр» образовано из двух греческих слов: tetra - «четыре» и hedra - «основание», «грань». Тетраэдр - многогранник, имеющий 4 треугольные грани, 6 рёбер и 4 вершины, в каждой из которых сходятся 3 ребра.

  • Слайд 3

    Построение тетраэдра

    Изображают обычно тетраэдр как четырехугольник с диагоналями, одну из которых (соответствующую невидимому ребру) изображают пунктирно. А В С D

  • Слайд 4

    Тетраэдр

    DАВС– тетраэдр А, В, С, D– вершины АВС – основание АD, ВD, СD, АС, АВ, ВС– ребра АH – высота тетраэдра C A B D H Два ребра тетраэдра, которые не имеют общих вершин, называются противоположными. Например, АD и ВС , ВD и АС, АВ и СD.

  • Слайд 5

    Определения медианы, бимедианы и высоты тетраэдра

    Отрезок, соединяющий вершину тетраэдра с точкой пересечения медиан противоположной грани, называется его медианой, опущенной из данной вершины. Отрезок, соединяющий середины скрещивающихся рёбер тетраэдра, называется его бимедианой, соединяющей данные рёбра. Отрезок, соединяющий вершину с точкой противоположной грани и перпендикулярный этой грани, называется его высотой, опущенной из данной вершины.

  • Слайд 6

    Элементы симметрии тетраэдра

    Тетраэдр имеет три оси симметрии, которые проходят через середины скрещивающихся рёбер. Тетраэдр имеет 6 плоскостей симметрии, каждая из которых проходит через ребро тетраэдра перпендикулярно скрещивающемуся с ним ребру.

  • Слайд 7

    Объем пирамиды

    где SОСН - площадь основания, h - высота. h

  • Слайд 8

    Площадь поверхности пирамиды

  • Слайд 9

    Типы тетраэдров

    Равногранный тетраэдр – это тетраэдр, у которого все грани – равные между собой треугольники. Ортоцентрический тетраэдр – это тетраэдр, у которого все высоты, опущенные из вершин на противоположные грани, пересекаются в одной точке. Прямоугольный тетраэдр – это тетраэдр, у которого все ребра, прилежащие к одной из вершин, перпендикулярны между собой. Правильный тетраэдр – это тетраэдр, у которого все грани — равносторонние треугольники. Соразмерный тетраэдр, бивысоты которого равны. Инцентрический тетраэдр –это тетраэдр, у которого отрезки, соединяющие вершины тетраэдра с центрами окружностей, вписанных в противоположные грани, пересекаются в одной точке.

  • Слайд 10

    Правильный тетраэдр

    Тетраэдр, все четыре грани которого — равные правильные треугольники, называется правильным тетраэдром . Правильный тетраэдр — это частный случай правильной треугольной пирамиды.

  • Слайд 11

    Все четыре грани правильного тетраэдра – правильные треугольники.Если длину ребра правильного тетраэдра обозначить a, то можно вычислить:

    Правильный тетраэдр

  • Слайд 12

    Прямоугольный тетраэдр

    Тетраэдр , у которого в одной вершине сходятся три прямых угла называют прямоугольным. Такой тетраэдр можно получить, разрезав куб.

  • Слайд 13

    Тетраэдры в живой природе

    Некоторые плоды, находясь вчетвером на одной кисти, располагаются в вершинах тетраэдра, близкого к правильному. Такая конструкция обусловлена тем, что центры четырёх одинаковых шаров, касающихся друг друга, находятся в вершинах правильного тетраэдра. Поэтому похожие на шар плоды образуют подобное взаимное расположение. Например, таким образом могут располагаться грецкие орехи.

  • Слайд 14

    Тетраэдры в строительстве

    Тетраэдр образует жёсткую, статически определимую конструкцию. Тетраэдр, выполненный из стержней, часто используется в качестве основы для пространственных несущих конструкций пролётов зданий, перекрытий, балок, ферм, мостов и т. д. Стержни испытывают только продольные нагрузки.

  • Слайд 15

    Тетраэдр в оптике

    Прямоугольный тетраэдр используется в оптике. Если грани, имеющие прямой угол, покрыть светоотражающим составом или весь тетраэдр выполнить из материала с сильным светопреломлением, чтобы возникал эффект полного внутреннего отражения, то свет, направленный в грань, противоположную вершине с прямыми углами, будет отражаться в том же направлении, откуда он пришёл. Это свойство используется для создания уголковых отражателей, катафотов.

  • Слайд 16

    Тетраэдры в микромире

    Молекула метана СН4 Молекула аммиака NH3 Алмаз C — тетраэдр с ребром равным 2,5220 ангстрем Флюорит CaF2, тетраэдр с ребром равным 3, 8626 ангстрем Сфалерит, ZnS, тетраэдр с ребром равным 3,823 ангстрем Комплексные ионы [BF4] -, [ZnCl4]2-, [Hg(CN)4]2-, [Zn(NH3)4]2+ Силикаты, в основе структур которых лежит кремнекислородный тетраэдр [SiO4]4-

  • Слайд 17

    Тетраэдры в производстве

    Форму тетраэдра нельзя назвать удобной, но и у нее есть применение, например, при изготовлении пакетов для молока. Оказалось, что на конвейере удобно склеивать подобные тетраэдры, отрезая заготовки для них от картонного “шланга”.

Посмотреть все слайды

Сообщить об ошибке