Содержание
-
Тетраэдр и Пирамида
Выполнила ученица 5б класса Опёнова Варвара
-
Тетраэдр – это многогранник с четырьмя треугольными гранями, в каждой из вершин которого сходятся по 3 грани. У тетраэдра 4 грани, 4 вершины и 6 рёбер.
-
Свойства тетраэдра
-
Параллельные плоскости, проходящие через пары скрещивающихся рёбер тетраэдра, определяют описанный около тетраэдра параллелепипед(призма)
-
Медиан и его вершины
Отрезок, соединяющий вершину тетраэдра с точкой пересечения медиан противоположной грани, называется его медианой, опущенной из данной вершины.
-
Тетраэдры в технике
-
Тетраэдр образует жёсткую, статически определимую конструкцию. Тетраэдр, выполненный из стержней, часто используется в качестве основы для пространственных несущих конструкций пролётов зданий, перекрытий, балок, ферм мостов и т.д. Стержни испытывают только продольные нагрузки.
-
Прямоугольный тетраэдр используется в оптике. Если грани, имеющие прямой угол, покрыть светоотражающим составом или весь тетраэдр выполнить из материала с сильным светопреломлением, чтобы возникал эффект полного внутреннего отражения, то свет, направленный в грань, противоположную вершине с прямыми углами, будет отражаться в том же направлении, откуда он пришёл. Это свойство используется для создания уголковых отражателей, катафотов.
-
Вот так выглядит правильный тетраэдр
-
-
-
Так выглядит развёрток тетраэдра и других фигур
-
Пирамида
-
Пирамида , многогранник, одной из граней которого служит многоугольник, а остальные грани суть треугольники с общей вершиной . В зависимости от числа боковых граней П. делятся на треугольные, четырёхугольные и т.д.
-
История развития геометрии пирамиды
-
Начало геометрии пирамиды было положено в Древнем Египте и Вавилоне, однако активное развитие получило в Древней Греции. Первый, кто установил, чему равен объем пирамиды, был Демократ [2], а доказал Евдокс Книдский. Древнегреческий математик Евклид, систематизировал знания о пирамиде в XII томе своих «Начал», а также вывел первое определение пирамиды: телесная фигура, ограниченная плоскостями, которые от одной плоскости сходятся в одной точке.
-
Свойства пирамиды
-
Все диагонали пирамиды принадлежат её граням. Если все боковые ребра равны, то: около основания пирамиды можно описать окружность, причём вершина пирамиды проецируется в её центр; боковые ребра образуют с плоскостью основания равные углы.
-
Если боковые грани наклонены к плоскости основания под одним углом, то: в основание пирамиды можно вписать окружность, причём вершина пирамиды проецируется в её центр; высоты боковых граней равны; площадь боковой поверхности равна половине произведения периметра основания на высоту боковой грани.
-
Так выглядит развёрток пирамиды
-
пирамида
Нет комментариев для данной презентации
Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.