Презентация на тему "Треугольники." 7 класс

Презентация: Треугольники.
Включить эффекты
1 из 9
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
0.0
0 оценок

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Посмотреть и скачать презентацию по теме "Треугольники." по математике, включающую в себя 9 слайдов. Скачать файл презентации 0.12 Мб. Для учеников 7 класса. Большой выбор учебных powerpoint презентаций по математике

  • Формат
    pptx (powerpoint)
  • Количество слайдов
    9
  • Аудитория
    7 класс
  • Слова
    геометрия
  • Конспект
    Отсутствует

Содержание

  • Презентация: Треугольники.
    Слайд 1

    Две стороны равные(равнобедренный)

    Все стороны равны (равносторонний)

  • Слайд 2

    Треугольники можно разделить на группы в зависимости от углов

  • Слайд 3

    Прямоугольный треугольник.

  • Слайд 4

    Признаки равенства треугольников.

  • Слайд 5

    Признаки равенства прямоугольных треугольников

    По катету и острому углу B A C B1 A1 C1 BC = B1C1  B = B1 Если катет и острый угол одного прямоугольного треугольника соответственно равны катету и острому углу другого, то треугольники равны.

  • Слайд 6

    B1 A1 C1 B A C BC = B1C1  А = А1

  • Слайд 7

    Признаки равенства прямоугольных треугольников

    2) По гипотенузе и острому углу B A C B1 A1 C1 AB = A1B1  B = B1 Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого, то треугольники равны.

  • Слайд 8

    3) По гипотенузе и катету.

    Дано:ABC- прямоугольный ( C = 900), A1B1C1- прямо угольный (C1= 900 ), АB= А1B1,AC=A1C1. Доказать:ABC= A1B1C1 B А С D B1 А1 С1 D1

  • Слайд 9

    Доказательство:

    CDB = CAB C1D1B1= C1A1B1 (CD=AC, (C1D1=A1C1, BD=BA) B1D1=B1A1) ABD = A1B1D1 по трем сторонам (AB=A1B1, AD= A1D1, BD = B1D1). Значит, А = А1. Получили, AB= A1B1, AC= A1C1, A = A1, следовательно, ABC= A1B1C1 (по двум сторонам и углу между ними). Ч.Т.Д.

Посмотреть все слайды

Сообщить об ошибке