Содержание
- 
              
            
 Формулы корней квадратных уравнений 1 
- 
              
            Квадратным уравнением называется уравнение вида …2 «Мозговой штурм» Если коэффициенты квадратного уравнения а = -0,5 b = 5 c = -1,2, то уравнение записывается … В каком случае квадратное уравнение называется полным квадратным уравнением? Квадратное уравнение называется неполным, если ... Квадратное уравнение, в котором первый коэффициент равен 1 называется … 
- 
              
            Назовите общую формулу корней приведенного квадратного уравнения3 Назовите формулу корней квадратного уравнения 
- 
              
            В каком случае используется данная формула4 Сколько корней имеет квадратное уравнение, если: D=0 D0 
- 
              
            
 1. Если d 
- 
              
            
 6 4. Уравнение ax2+bx+c=0 не имеет корней, если D=0 6. Уравнения x2=9и|x|=3 имеют одни и те же корни 5. Уравнение сводится к приведенному квадратному уравнению умножением обеих частей уравнения на (-3) 
- 
              
            
 7 Установи соответствие 
- 
              
            
 8 Решите уравнение 
- 
              
            
 Найдите сумму и произведение корней уравнения 3x2-22x+7=0 9 Определить при каких значениях a уравнение не имеет корней 3x2 - 2x - a=0 
- 
              
            
 10 Закончите предложение Сегодня на уроке я узнал… Я считаю, что…….. Мне пригодится это.... 
- 
              
            
 11 Домашнее задание § 7 (повторить правила, формулы) с. 50 № 138 (1,2) 
- 
              
            
 Спасибо за внимание! 
- 
              
            
 Приведите уравнение к видуax2+bx+c=0 а) x(x+3)=4 б)(x+2)=x(2x+3) Решите уравнение 2x(5x-7)=2x2-5 
 
                  
                 
                  
                 
                  
                 
                  
                 
                  
                 
                  
                 
                  
                 
                  
                 
                  
                 
                  
                 
                  
                 
                  
                 
                  
                 
               
               
               
               
               
               
               
               
               
               
               
               
               
   
   
   
   
   
   
   
   
   
  
Нет комментариев для данной презентации
Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.