Презентация на тему "Генетика и здоровье человека" 11 класс

Презентация: Генетика и здоровье человека
Включить эффекты
1 из 56
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
4.1
3 оценки

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Презентация для 11 класса на тему "Генетика и здоровье человека" по медицине. Состоит из 56 слайдов. Размер файла 1.2 Мб. Каталог презентаций в формате powerpoint. Можно бесплатно скачать материал к себе на компьютер или смотреть его онлайн с анимацией.

Содержание

  • Презентация: Генетика и здоровье человека
    Слайд 1

    ГЕНЕТИКА ЧЕЛОВЕКА И МЕДИЦИНСКАЯ ГЕНЕТИКА

    Сломинский Петр Андреевич доктор биологических наук, профессор Заведующий лабораторией молекулярной генетики наследственных заболеваний Института молекулярной генетики Российской академии наук pptcloud.ru

  • Слайд 2

    Законы генетики: родители и дети на одно лицо

    Актриса Блайт Дэннер и ее дочь Гвинет Пэлтроу Певец Джон Леннон и его сын Шон Леннон

  • Слайд 3

    А если посмотреть шире?

  • Слайд 4

    Вопрос: Насколько велика роль генетики человека в жизни каждого из нас?

    Ответ: Она бесконечно велика. Мы можем изменить в себе многое - но наши гены нам не подвластны

  • Слайд 5

    Генетика и геномика человека будет занимать все более важное место в изучении биологии человека – в решении проблем возникновения и эволюции вида Homo sapiens, в изучении формирования фенотипа индивидуума на всех этапах онтогенеза - от зачатия до смерти.

  • Слайд 6

    Что такое медицинская генетика?

    Нормальная анатомия Патологическая анатомия Нормальная физиология Патологическая физиология ГЕНЕТИКА МЕДИЦИНСКАЯ ГЕНЕТИКА

  • Слайд 7

    Медицинская генетика Система знаний о роли генетических факторов в патологии человека и система методов диагностики, лечения и профилактики наследственной патологии в широком смысле. (Гинтер Е.К., 2003) Медицинская генетика изучает роль наследственности в патологии человека, закономерности передачи от поколения к поколению наследственных болезней, разрабатывает методы диагностики, профилактики и лечения наследственной патологии, включая болезни с наследственной предрасположенностью. (Бочков Н.П., 2004)

  • Слайд 8

    Клиническая генетика Прикладной раздел медицинской генетики, изучающий наследственные заболевания и методы их предупреждения, диагностики и лечения. (Бочков Н.П., 2004)

  • Слайд 9

    АКСИОМЫ МЕДИЦИНСКОЙ ГЕНЕТИКИ НАЧАЛА XXI ВЕКА Наследственные болезни являются частью общей наследственной изменчивости человека. Нет резкой границы между наследственной патологией и вариантами нормальной вариабельности фенотипа. У человека нет признаков, зависящих ТОЛЬКО от генов или ТОЛЬКО от среды. Фенотип всегда есть результат взаимодействия генетической конституции организма с факторами внешней среды Каждый отдельный человек и человечество в целом несут на себе генетический груз, величина которого постоянно изменяется в результате мутационного процесса и естественного отбора.

  • Слайд 10

    В настоящее время происходит резкое изменение генетической структуры популяций и условий внешней среды, что влияет на структуру генетического груза и его величину. Прогресс медицины приводит к повышению продолжительности жизни и улучшению репродуктивного здоровья населения, что также приводит к изменению картины распределения генетического груза в популяции в ряду поколений

  • Слайд 11

    Чуть-чуть истории … Наследственные болезни были всегда. И всегда интересовали человека ВЕЛАСКЕС Портрет Francisco Lezcano Портрет Sebastian de Morra Первые сведения о передаче наслед-ственной патологии у человека содержатся в Талмуде(4 век до н.э.), в котором указано на опасность обрезания крайней плоти у новорожденных мальчиков, старшие братья которых или дяди по материнской линии страдают кровотечением

  • Слайд 12

    Френсис Гальтон В.М. Флоринский В изданной в 1866 г. книге «Усовершенствование и вырождение человеческого рода» впервые в русской литературе высказал некоторые мысли, положенные позднее в основу медицинской генетики, а также идеи по вопросам евгеники - науки о наследственном здоровье человека и путях улучшения его наследственных свойств. Первым начал изучение однояйцевых близнецов и обнаружил, что некоторые человеческие признаки явственно передаются по наследству. Развивал учение о наследственной обусловленности индивидуально-психологических различий между людьми. Автор термина «евгеника»

  • Слайд 13

    С.Н. Давиденков «Задача профилактики в области наследственных болезней нервной системы теоретически может быть мыслима, как: 1) борьба с возникновением болезненных мутаций; 2) дача правильного медико-евгенического совета в семьях, где менделируют тяжелые наследственные формы» 1880-1961 Организовал первые медико-генетические консультации в России – в Москве (1925 год) и Ленинграде (1932 год), написал первые книги с описанием наследственных заболеваний нервной системы («Эволюционно-генетические проблемы в невропатологии», 1947; «Наследственные болезни нервной системы», 1925; «Проблема полиморфизма наследственных болезней нервной системы», 1934)

  • Слайд 14

    «Врожденное» и «наследственное» заболевание – это одно и то же?

  • Слайд 15

    По определению ВОЗ в МКБ-10

    «Это разные понятия» Термин «врожденное заболевание» говорит нам о том, что патология присутствовала у человека с момента его рождения. И явиться она могла следствием как «поломки» его генов, так и результатом воздействия на развивающийся плод неблагоприятных факторов во время беременности или травмы во время родов. Термин «наследственная болезнь» подразумевает то, что причина нарушения кроется в структурном изменении наследственной информации клеток человека. А будет заболевание передано по наследству или нет – зависит от конкретного заболевания.

  • Слайд 16

    Врожденные пороки развития

    Spina bifida

  • Слайд 17

    Талидомид

  • Слайд 18

    ►2-3 % всех беременностей завершается рождением ребенка с серьезными наследственными болезнями или врожденными аномалиями, которые являются причиной инвалидности, умственной отсталости или ранней смерти. ►К 25 годам 50-70 из 1000 живорожденных индивидуумов имеют болезни со значительной генетической компонентой. ►Более 25 % пациентов детских клиник имеют наследственную патологию. ►У более 50 % детей, не способных к обучению – генетические нарушения. «Употребление термина «негенетические» совершенно не обосновано ввиду малой вероятности, что какие-то болезни полностью не зависят от генетических факторов» Генетические болезни не так редки, как предполагалось ранее Пузырев В.П., 2006

  • Слайд 19

    Вклад наследственных и врожденных болезней в младенческую и детскую смертность в развитых странах

  • Слайд 20

    5 групп наследственных заболеваний

    Моногенные болезни Хромосомные болезни Болезни с наследственной предрасположенностью (мультифакториальные) Генетические болезни соматических клеток Болезни генетической несовместимости матери и плода

  • Слайд 21

    Хромосомные болезни Моногенные болезни Мультифакториальные болезни Новорожденные Подростки Взрослые Возраст дебюта наследственных болезней Пузырев В.П., 2006

  • Слайд 22

    Как классифицируются наследственные заболевания?

  • Слайд 23

    Генетический принцип классификации наследственных заболеваний Аутосомно-доминантные Аутосомно-рецессивные Х-сцепленные доминантные Х-сцепленные рецессивные Y-сцепленные (голандрические) Митохондриальные.  Отнесение болезни к той или иной группе помогает врачу сориентироваться относительно ситуации в семье и определить вид медико- генетической помощи.

  • Слайд 24

    Основные законы наследования признаков по Менделю

    24 Закон единообразия гибридов первого поколения

  • Слайд 25

    25 Закон расщепления на фенотипические классы гибридов второго поколения. При скрещивании гибридов первого поколения между собой (т.е. гетерозиготных особей) получается следующий результат Расщепление по генотипу: 1АА:2Аа:1аа по фенотипу: 3:1

  • Слайд 26

    26 Закон независимого комбинирования генов. При дигибридном скрещивании каждая пара признаков в потомстве дает расщепление независимо от другой пары. Дигибридное скрещивание 9:3:3:1 = (3:1)2

  • Слайд 27

    Что такое клинико-генеалогический метод?

  • Слайд 28

    Клинико-генеалогический метод

    раскрывает закономерности наследования признаков в границах одной семьи, поэтому его называют методом родословного дерева; позволяет установить тип наследования данного наследственного заболевания; оформление родословного дерева проводится путем специальных обозначений и правил; полученные данные должны быть отражены в легенде (генетической карте).

  • Слайд 29

    Этапы клинико-генеалогического анализа

    - Сбор данныхобо всех родственниках пробанда (анамнез);- Построение родословной;- Оформление легендык родословной; Клинико-генеалогическийанализ родословной: выявление наследственных болезней и врожденных пороков развития в родословной, определение типа наследования болезни, зиготности (гомо-, гетерозигота) и пенетрантности гена, расчет генетического риска (вероятности рождения ребенка с наследственной патологией), выводы и рекомендации для пробанда и членов родословной.

  • Слайд 30

    Сложности клинико-генеалогического анализа

    - В зависимости от цели исследования родословная может быть полной или ограниченной. - Желательно стремиться к наиболее полному составлению родословной по восходящему, нисходящему и боковым направлениям. - Сложность сбора анамнеза: пробанд должен хорошо знать родственников по линии матери и отца не менее трех поколений и состояние их здоровья, что бывает крайне редко. - Одного опроса, как правило, недостаточно: для некоторых членов родословной приходится назначать полное клиническое, параклиническое или лабораторное обследование для уточнения состояния их здоровья.

  • Слайд 31

    Проблемы анализа родословных

    Решетки Пеннета и тест хи-квадрат хорошо работают для организмов с большим числом потомков и контролируемые скрещивания, но у человека все по-другому: 1. Небольшой (и очень небольшой) размер семей. 2. Произвольный выбор брачных партнеров. 3. Проблемы с точным определением отцовства.

  • Слайд 32

    Основные символы

    Мужчина Мужчина – носитель признака Женщина Женщина – носитель признака Пол не определен Умерший Семейная пара Пробанд Сибсы Родственная семейная пара ǀ ΙΙ ? 1 2 1 2 Необследованный клинически член семьи Гетерозиготный носитель мутации

  • Слайд 33

    Аутосомно-доминантное наследование

    Правило для аутсайдера в доминантных семьях : все больные аутсайдеры гетерозиготны по доминантному (патологическому) аллелю Все здоровые аутсайдеры – гомозиготы по нормальному рецессивному аллелю

  • Слайд 34

    Аутосомно-рецессивное наследование

    Все больные – гомозиготы по мутантному аллелю Здоровые аутсайдеры по умолчанию – гомозиготы по нормальному аллелю В семьях с рецессивным наследованием часты близкородственные браки

  • Слайд 35
  • Слайд 36

    Большие родословные

    Главные задачи: 1. Определить тип наследования 2. Определить генотипы для разных членов семьи 3. Определить вероятность рождения больного ребенка при браке между двумя членами семьи.

  • Слайд 37

    Доминантное или Рецессивное ?

    1. Если у двух больных родителей ребенок здоров, то это доминантное наследование: у обоих родителей может быть генотип Dd (где D - патологический аллель) и у ребенка может быть нормальный генотип dd 2. Если у двух здоровых родителей ребенок болен – то это семья с рецессивным наследованием. Оба родителя гетерозиготны по мутантному аллелю (генотип Rr) и имеют нормальный фенотип, а ребенок может иметь генотип rr – и быть болен. 3. Если каждый больной имеет больного родителя – наследование доминантное !

  • Слайд 38

    1 2 3 4 5 6 7 8 9 10 1 2 I 1 2 3 4 5 6 II III Аутосомно-доминантное наследование

  • Слайд 39

    Определение генотипов в семьях с доминантным наследованием

    1. Все здоровые члены семьи имеют генотип dd. 2. Больные дети будут гетерозиготны (Dd), если только один из родителей будет болен. Такой ребенок получит аллель D от больного родителя и аллель d от здорового родителя. 3. Больные родители здорового ребенка будут иметь генотип Dd и передадут ребенку по одному d аллелю. 4. Правило аутсайдера – больной аутсайдер имеет генотип DdOutsider rule for dominant autosomal pedigrees: An affected outsider (a person with no known parents) is assumed to be heterozygous (Dd). 5. Если больные родители гетерозиготны (Dd), то их больной ребенок будет иметь генотип DD с вероятностью 33%и генотип Dd с вероятностью 66%.

  • Слайд 40

    1 2 3 4 5 6 7 8 9 10 1 2 I 1 2 3 4 5 6 II III Аутосомно-доминантное наследование

  • Слайд 41

    Аутосомно-рецессивное наследование

  • Слайд 42

    Определение генотипов в семьях с рецессивным наследованием

    1. Все больные члены семьи имеют генотип rr. 2. При браке больного члена семьи (rr генотип) с здоровым членом семьи все дети будут иметь генотип Rr. 3. При рождении больного ребенка у здоровых родителей оба родители являются Rr гетерозиготами. 4. Правило аутсайдера – все здоровые аутсайдеры в аутосомно-рецессивной семье гомозиготны по нормальному аллелю (генотип RR). 5. Children of RR x Rr have a 1/2 chance of being RR and a 1/2 chance of being Rr. Note that any siblings who have an rr child must be Rr. 6. Здоровый ребенок у гетерозиготных по аллелю r родителей на 66% будет иметь генотип Rr и на 33% - генотип RR.

  • Слайд 43

    Аутосомно-рецессивное наследование

  • Слайд 44

    Гладко было на бумаге, да забыли про овраги …

    ПРОБЛЕМЫ Фенокопии Генокопии Неполная и возраст-зависимая пенетрантность Разная экспрессивность признака Другие типы наследования признака

  • Слайд 45

    Митохондриальное наследование

    Митохондриальная ДНК наследуется только по материнской линии Все дети больной митохондриальным заболеванием матери наследуют это заболевание У мужчины с митохондриальным заболеванием все дети будут здоровы Возможна гетероплазмия – сочетание в одной яйцеклетке нескольких вариантов мтДНК

  • Слайд 46

    Сцепленное с полом наследование - 1

    Сцепленный с Y вариант Признак выявляется только у мужчин и передается по мужской линии всем сыновьям Признак гемизиготный и проявляется всегда у его носителей

  • Слайд 47

    Сцепленное с полом наследование – 2 (доминантное)

    Матери передают свою Х хромосому с мутантным аллелем и дочерям, и сыновьям daughters Мутантную Х хромосому отцы передают только дочерям Стандартное правило аутсайдеров для женщин в семьях с Х-сцепленным заболеванием. Аутсайдеры-мужчины гемизиготны и всегда очевидно, какой вариант находится на его Х хромосоме . XD = доминантный мутантный аллель Xd = рецессивный нормальный аллель

  • Слайд 48

    Мужчины получают свою Х хромосому от матери Отцы передают свою Х хромосому только дочерям У женщин фенотип наблюдается только при гомозиготности по мутантному аллелю Фенотип наблюдается у мужчин при наличии мутантного аллеля Правило аутсайдеров – клинически здоровые женщины рассматриваются как гомозиготы по нормальному аллелю Сцепленное с полом наследование – 2 (рецессивное)

  • Слайд 49
  • Слайд 50

    Компьютерные генеалогические программы

    Составление родословной – задача непростая, требующая и массу интеллектуальных расходов и немало временных затрат. В век информатизации для облегчения сбора и хранения генеалогической информации предложены различные русскоязычные и англоязычные электронные программы, позволяющие облегчить и ускорить составление родословной.

  • Слайд 51

    Клинико-генетические базы данных

    Online Mendelian Inheritance in Man – OMIM www. Omim.org Gene Clinics www.geneclinics.org National Newborn Screening and Genetics Resource Center web site: NNSGRC – www.genes-r-us.uthscsa.edu/ Alliance of Genetic Support Groups www.medhlp.netusa.net/www/agsg.htm

  • Слайд 52

    Электронная база данных "Менделевское наследование у человека" (OMIM) OMIM - on-line mendelian inheritance of man Для каждой болезни суммированы клинические и молекулярно-генетические данные (о картировании, идентификации гена, практических возможностях генодиагностики). База находится в Национальном центре биотехнологической информации (США). Адрес в Интернете: www.ncbi.nlm.nih.gov/omim/

  • Слайд 53

    WWW.PROGENYGENETICS.COM

  • Слайд 54

    PED или «Родословная» http://www.medgen.de/ped/index.html

  • Слайд 55

    MyHeritage.com

  • Слайд 56

    Текущая версия - 4.0. Бесплатный вариант – не более 40 человек. http://genery.com/ «Древо жизни»

Посмотреть все слайды

Сообщить об ошибке