Содержание
-
Гормоны. Классификация и механизм действия гормонов.
Автор – доцент Рыскина Е.А.
-
4 основные системы регуляции метаболизма:
Центральная нервная система (за счет передачи сигналов посредством нервных импульсов и нейромедиаторов); Эндокринная система (с помощью гормонов, которые синтезируются в железах и транспортируются к клеткам-мишеням (на рис. А); Паракринная и аутокринная системы (при участии сигнальных молекул, секретируемых из клеток в межклеточное пространство - эйкозаноидов, гистаминов, гормонов ЖКТ, цитокинов) (на рис. Б и В); Иммунная система (посредством специфических белков – антител, Т-рецепторов, белков комплекса гистосовместимости.) Все уровни регуляции интегрированы и действуют как единое целое.
-
Эндокринная система регулирует обмен веществ посредством гормонов.Гормоны (др.-греч. ὁρμάω — возбуждаю, побуждаю) - биологически активные органические соединения, которые вырабатываются в незначительных количествах в железах внутренней секреции, осуществляют гуморальную регуляцию обмена веществ и имеют различную химическую структуру.
-
Классическим гормонам присущ ряд признаков:
Дистантность действия – синтез в железах внутренней секреции, а регуляция отдаленных тканей Избирательность действия Строгая специфичность действия Кратковременность действия Действуют в очень низких концентрациях, под контролем ЦНС и регуляция их действия осуществляется в большинстве случаев по типу обратной связи Действуют опосредованно через белковые рецепторы и ферментативные системы
-
Организация нервно-гормональной регуляции
Существует строгая иерархия или соподчиненность гормонов. Поддержание уровня гормонов в организме в большинстве случаев обеспечивает механизм отрицательной обратной связи.
-
-
-
Регуляция уровня гормонов в организме
Изменение концентрации метаболитов в клетках-мишенях по механизму отрицательной обратной связи подавляет синтез гормонов, действуя либо на эндокринные железы, либо на гипоталамус. Существуют эндокринные железы для которых отсутствует регуляция тропными гормонами – паращитовидная железа, мозговое вещество надпочечников, ренин-альдостероновая система и поджелудочная железа. Они контролируются нервными влияниями или концентрацией определенных веществ в крови.
-
Классификация гормонов
по биологическим функциям; по механизму действия; по химическому строению; различают 4 группы: 1. Белково-пептидные 2. Гормоны-производные аминокислот 3. Гормоны стероидной природы 4. Эйкозаноиды
-
Классификация гормонов по биологическим функциям.
-
Классификация гормонов по химическому строению
-
1. Белково - пептидныегормоны
Гормоны гипоталамуса; гормоны гипофиза; гормоны поджелудочной железы - инсулин, глюкагон; гормоны щитовидной и паращитовидной желез – соответственно кальцитонин и паратгормон. Вырабатываются в основном путем прицельного протеолиза. У гормонов короткое время жизни, имеют от 3 до 250 АМК остатков.
-
Главный анаболический гормон – инсулин, главный катаболический гормон - глюкагон
-
Некоторые представители белково - пептидныхгормонов: тиролиберина (пироглу-гис-про-NН2), инсулина и соматостатина.
-
2. Гормоны - производные аминокислот
Являются производными аминокислоты - тирозина. К ним относятся гормоны щитовидной железы - трийодтиронин (I3) и тироксин (I4), а также - адреналин и норадреналин – катехоламины.
-
Гормоны щитовидной железы
-
Схема синтеза трийодтиронинов
-
3. Гормоны стероидной природы
Синтезируются из холестерина (на рис.) Гормоны коркового вещества надпочечников – кортикостероиды (кортизол, кортикостерон) Гормоны коркового вещества надпочечников – минералокортикоиды (андостерон) Половые гормоны: андрогены (19 «С») и эстрогены (18 «С»)
-
Синтез основных кортикостероидов
-
Эйкозаноиды
Предшественником всех эйкозаноидов является арахидоновая кислота. Они делятся на 3 группы – простагландины, лейкотриены, тромбоксаны. Эйказоноиды - медиаторы (локальные гормоны) — широко распространенная группа сигнальных веществ, которые образуются почти во всех клеткахорганизма и имеют небольшую дальность действия. Этим они отличаются от классических гормонов, синтезирующихся в специальных клеткахжелез внутренней секреции.
-
Характеристика разных групп эйказоноидов
Простагландины (Pg) — синтезируются практически во всех клетках, кроме эритроцитов и лимфоцитов. Выделяют такие типы простагландинов A, B, C, D, E, F. Функции простагландинов сводятся к изменению тонуса гладких мышц бронхов, мочеполовой и сосудистой систем, желудочно-кишечного тракта, при этом направленность изменений различна в зависимости от типа простагландинов и условий. Они также влияют на температуру тела. Простациклины являются подвидом простагландинов (Pg I), но дополнительно обладают особой функцией — ингибируют агрегацию тромбоцитов и обусловливают вазодилатацию. Особенно активно синтезируются в эндотелии сосудов миокарда, матки, слизистой желудка.
-
Тромбоксаны и лейкотриены
Тромбоксаны (Tx) образуются в тромбоцитах, стимулируют их агрегацию и вызывают сужение мелких сосудов. Лейкотриены (Lt) активно синтезируются в лейкоцитах, в клетках лёгких, селезёнки, мозга, сердца. Выделяют 6 типов лейкотриенов: A, B, C, D, E, F. В лейкоцитах они стимулируют подвижность, хемотаксис и миграцию клеток в очаг воспаления. Также вызывают сокращение мускулатуры бронхов в дозах в 100—1000 раз меньших, чем гистамин.
-
Взаимодействие гормонов с рецепторами клеток-мишеней
Для проявления биологической активности связывание гормонов с рецепторами должно приводить к образованию сигнала, который вызывает биологический ответ. Например: щитовидная железа – мишень для тиротропина, под действием которого увеличивается количество ацинарных клеток, повышается скорость синтеза тиреоидных гормонов. Клетки-мишени отличают соответсвующий гормон, благодаря наличию соответствующего рецептора.
-
-
Общая характеристика рецепторов
Рецепторы могут находится: - на поверхности клеточной мембраны - внутри клетки – в цитозоле или в ядре. Рецепторы – это белки, могут состоять из нескольких доменов. Мембранные рецепторы имеют домен узнавания и связывания с гормоном, трансмембранный и цитоплазматический домены. Внутриклеточные (ядерные) – домены связыванияс гормоном, с ДНК и с белками, регулирующие трансдукцию.
-
Основные этапы передачи гормонального сигнала:через мембранные (гидрофобные) и внутриклеточные (гидрофильные) рецепторы. Это быстрый и медленный пути.
-
Гормональный сигнал меняет скорость метаболических процессов ответ путем: - изменение активности ферментов - изменение количества ферментов. По механизму действия различают гормоны: - взаимодействующие с мембранными рецепторами (пептидные гормоны, адреналин, эйкозаноиды) и - взаимодействующие с внутриклеточными рецепторами (стероидные и тиреодные гормоны)
-
Передача гормонального сигнала через внутриклеточные рецепторы для стероидных гормонов (гормоны коры надпочечников и половые гормоны), тиреодных гормонов (Т3 и Т4). Медленный тип передачи.
-
Передача гормонального сигнала через ядерный рецептор.
-
Передача гормонального сигнала через мембранные рецепторы
Передача информации от первичного посредника гормона осуществляется через рецептор. Этот сигнал рецепторы трансформируют в изменение концентрации вторичных посредников, получивших название вторичных мессенджеров. Сопряжение рецептора с эффекторной системой осуществляется через G –белок. Общим механизмом, посредством которого реализуются биологические эффекты является процесс «фосфорилирования – дефосфорилирования ферментов» Существуют разные механизмы передачи гормонального сигналы через мембранные рецепторы – аденилатциклазная, гуанилатциклазная, инозитолфосфатная системы и другие.
-
Сигнал от гормона трансформируется в изменении концентрации вторичных посредников – цАМФ, цГТФ, ИФ3, ДАГ, СА2+, NO.
-
Самая распространенная система передача гормонального сигнала через мембранные рецепторы – аденилатциклазная система.
Комплекс гормон-рецептор связан с G – белком, который имеет 3 субъединицы (α,β и γ). В отсутствии гормона α- субъединица связана с ГТФ и аденилатциклазой. Комплекс гормон-рецептор приводит к отщеплению димера βγ от αГТФ. Субъединица αГТФ активирует аденилатциклазу, катализирующую образование циклической АМФ (цАМФ). цАМФ активирует протеинкиназу А(ПКА), фосфорилируюшую ферменты, которые меняют скорость метаболических процессов. Протеинкиназы различают А,В,С и др.
-
Адреналин и глюкагон через аденилатциклазную систему передачи гормонального сигнала активируют гормонзависимую ТАГ-липазу адипоцитов. Происходит при напряжении организма (голодании, длительной мышечной работе, охлаждении). Инсулин блокирует этот процесс.
ПротеинкиназаА фосфорилирует ТАГ-липазу и активирует ее. ТАГ-липаза отщепляет от триацилглицероловжирные кислоты с образованием глицерола. Жирные кислоты окисляются и обеспечивают организм энергией.
-
Передача сигнала с адренорецепторов. АС – аденилатциклаза, PkA – протеинкиназа А, PkC – протеинкиназа С, ФлС – фосфолипаза С, ФлА2 – фосфолипаза А2, ФлD – фосфолипаза D, ФХ – фосфатидилхолин, ФЛ – фосфолипиды, ФК – фосфатидная кислота, АхК – арахидоновая кислота, PIP2 – фосфатидилинозитолбифосфат, IP3 – инозитолтрифосфат, DAG – диацилглицерол, Pg – простагландины, LT – лейкотриены.
-
Адренорецепторы всех типов реализуют свое действие через Gs-белки. α- субъединицы этого белка активируют аденилатциклазу, которая обеспечивает синтез в клетке цАМФ из АТФ и активацию цАМФ зависимой протеинкиназы А. βγ-субъединицы Gs-белка активируют Са2+-каналы L-типа и макси-K+-каналы. Под влиянием цАМФ-зависимой протеинкиназы А происходит фосфорилированиекиназы легких цепей миозина и она переходит в неактивную форму, не способную фосфорилировать легкие цепи миозина. Процесс фосфорилирования легких цепей прекращается и гладкомышечная клетка расслабляется.
-
Американские ученые Роберт Лефковиц и Брайан Кобилка удостоились Нобелевской премии в 2012 г. за постижение механизмов взаимодействия рецепторов адреналина с G-белками.
Взаимодействие бета-2 рецептора (обозначен синим цветом) c G-белками (обозначены зеленым цветом). Рецепторы, сопряженные с G-белками, очень красивые, если рассматривать архитектурные молекулярные ансамбли клетки как шедевры природы. Их называют «семиспиральными», поскольку они, спирально упакованы в клеточной мембране на манер елочного серпантина и «пронизывают» ее семь раз, выставляя на поверхность «хвостик», способный воспринять сигнал и передать конформационные изменения всей молекуле.
-
G-белки (англ. G proteins) — это семейство белков, относящихся к ГТФазам и функционирующих в качестве посредников во внутриклеточных сигнальных каскадах. G-белки названы так, поскольку в своём сигнальном механизме они используют замену ГДФ (синий цвет) на ГТФ (зеленый цвет) как молекулярный функциональный «выключатель» для регулировки клеточных процессов.
-
G-белки делятся на две основных группы — гетеротримерные («большие») и «малые». Гетеротримерные G-белки — это белки с четвертичной структурой, состоящие из трёх субъединиц: альфа(α), бета (β) и гамма (γ). Малые G-белки — это белки из одной полипептидной цепи, они имеют молекулярную массу 20—25 кДа и относятся к суперсемействуRas малых ГТФаз. Их единственная полипептидная цепь гомологична α-субъединице гетеротримерных G-белков. Обе группы G-белков участвуют во внутриклеточной сигнализации.
-
Циклический аденозинмонофосфат (циклический AMФ, цAMФ, cAMP) — производное АТФ, выполняющее в организме роль вторичного посредника, использующегося для внутриклеточного распространения сигналов некоторых гормонов (например, глюкагона или адреналина), которые не могут проходить через клеточную мембрану.
-
Каждой из систем передачи гормонального сигнала соответствует определенный класс протеинкиназ
Активность протеинкиназ типа А регулируется цАМФ, протеинкиназыG - цГМФ. Са2+ - кальмодулинзависимыепротеинкиназы находятся под контролем концентрации СА2+. Протеинкиназы типа С регулируются ДАГ. Повышение уровня какого-либо вторичного посредника приводит к активации определенного класса протеинкиназ. Иногда субъединица мембранного рецептора может обладать активностью фермента. Например: тирозиноваяпротеинкиназа рецептора инсулина, активность которой регулируется гормоном.
-
Действие инсулина на клетки-мишени начинается после его связывания с мембранными рецепторами, при этом внутриклеточный домен рецептора обладает тирозинкиназной активностью.
Тирозинкиназазапускает процессы фосфорилирования внутриклеточных белков. Происходящее при этом аутофосфорилирование рецептора ведет к усилению первичного сигнала. Инсулин-рецепторный комплекс может вызывать активирование фосфолипазы С, образование вторичных посредников инозитолтрифосфата и диацилглицерола, активацию протеинкиназы С, ингибирование цАМФ. Участие нескольких систем вторичных посредников объясняет многообразие и различия эффектов инсулина в разных тканях.
-
Другая система – гуанилатциклазная мессенджерская система.
Цитоплазматический домен рецептора обладает активностью гуанилатциклазы (гемсодержащий фермент). Молекулы цГТФ могут активировать ионные каналы илипротеинкиназуG, фосфорилирующую ферменты. цГМФ контролирует обмен воды и ионный транспорт в почках и кишечнике, а в сердечной мышце служит сигналом релаксации.
-
Передача гормонального сигнала через NO
-
Инозитолфосфатная система.
Связывание гормона с рецептором, вызывает изменение конформациии рецептора. Происходит диссоциация G-белка и ГДФ заменяется на ГТФ. Отделившаяся α-субъединица, связанная с молекулой ГТФ, приобретает сродство к фосфолипазе С. Под действием фосфолипазы-С происходит гидролиз липида мембраны фосфатидилинозитол-4,5-бисфосфата (ФИФ2) и образование инозитол-1,4,5-трифосфат (ИФ3) и диацилглицерол (ДАГ). ДАГ участвует в активации фермента протеинкиназы С (ПКС). Инозитол-1,4,5-трифосфат (ИФ3) связывается специфическими центрами Са2+-канала мембраны ЭР, это приводит к изменению конформации белка и открытию канала - Са2+ поступает в цитозоль. В отсутствие в цитозоле ИФ3 канал закрыт.
-
Биологическое действие гормона роста (ифр – инсулиноподобный фактор роста)
-
Нет комментариев для данной презентации
Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.