Содержание
-
Геометрические места точек
Геометрическим местом точек (ГМТ) называется фигура, состоящая из всех точек, удовлетворяющих заданному свойству или нескольким заданным свойствам. Примерами геометрических мест точек являются: окружность– ГМТ, удаленных от данной точки на данное расстояние; круг– ГМТ, удаленных от данной точки на расстояние, не превосходящее данное.
-
Упражнение 1
Пусть O – точка плоскости. Изобразите ГМТ X, для которых выполняются неравенства r OX R. Ответ: Кольцо
-
Упражнение 2
На данной прямой a найдите точки, удаленные от данной точки C на заданное расстояние R. Какие при этом возможны случаи? Ответ: Точки пересечения прямой a и окружности с центром в точке C и радиусом R. Получаются две, одна или ни одной точки в зависимости от того, расстояние от точки C до прямой a больше R, равно R или меньше R соответственно.
-
Упражнение 3
На прямой c отметьте точки, удаленные от точки A на расстояние, равное (стороны квадратных клеток равны 1).
-
Пересечение фигур
Пусть Ф1 и Ф2 – фигуры на плоскости. Фигура Ф, состоящая из всех точек, принадлежащих фигуре Ф1 и фигуре Ф2, называется пересечением фигур Ф1 и Ф2 и обозначается Ф1 Ф2.
-
Упражнение 4
Ответ: Искомое ГМТ является пересечением двух кругов с центрами в точках O1, O2и радиусами R1, R2. Даны две точки O1и O2. Найдите ГМТ X, для которых XO1 R1и XO2 R2. Пересечением каких фигур является искомое ГМТ.
-
Объединение фигур
Пусть Ф1 и Ф2 – фигуры на плоскости. Фигура Ф, состоящая из всех точек, принадлежащих фигуре Ф1 или фигуре Ф2, называется объединением фигур Ф1 и Ф2 и обозначается Ф1 Ф2.
-
Упражнение 5
Даны две точки O1и O2. Найдите ГМТ X, для которых XO1 R1или XO2 R2. Объединением каких фигур является искомое ГМТ. Ответ: Искомое ГМТ является объединением двух кругов с центрами в точках O1, O2и радиусами R1, R2.
-
Разность фигур
Пусть Ф1 и Ф2 – фигуры на плоскости. Фигура Ф, состоящая из всех точек, принадлежащих фигуре Ф1 и не принадлежащих фигуре Ф2, называется разностью фигур Ф1 и Ф2 и обозначается Ф1 \Ф2.
-
Упражнение 6
Ответ: Искомое ГМТ является разностью двух кругов с центрами в точках O1, O2и радиусами R1, R2. Даны две точки O1и O2. Найдите ГМТ X, для которых XO1 R1и XO2 R2. Разностью каких фигур является искомое ГМТ.
-
Серединный перпендикуляр
Серединным перпендикуляром к заданному отрезку называется … Теорема. Серединный перпендикуляр к отрезку является ГМТ, одинаково удаленных от концов этого отрезка. прямая, перпендикулярная этому отрезку и проходящая через его середину. Доказательство. Пусть дан отрезок АВ и точка О – его середина. Очевидно, точка О одинаково удалена от точек А, В и принадлежит серединному перпендикуляру. Пусть точка С одинаково удалена от точек А и В и не совпадает с точкой О. Обратно, пусть точка С принадлежит серединному перпендикуляру и не совпадает с О, тогда прямоугольные треугольники АОС и ВОС равны (по катетам). Следовательно, АС=ВС. Тогда треугольник АВС равнобедренный и СО – медиана. По свойству равнобедренного треугольника медиана является также и высотой. Значит, точка С принадлежит серединному перпендикуляру.
-
Упражнение 7
Постройте геометрическое место точек, равноудаленных от точек A и B.
-
Упражнение 8
На прямой c отметьте точку C равноудаленную от точек A и B.
-
Упражнение 9
Найдите геометрическое место центров окружностей, проходящих через две данные точки. Ответ: Серединный перпендикуляр к отрезку, соединяющему две данные точки.
-
Упражнение 10
Найдите геометрическое место вершин С равнобедренных треугольников с заданным основанием AB. Ответ: Серединный перпендикуляр к отрезку AB без середины этого отрезка.
-
Упражнение 11
Пусть А и В - точки плоскости. Найдите геометрическое место точек С, для которых АС ВС. Ответ: Полуплоскость, определяемая серединным перпендикуляром к отрезку AB, содержащая точку A;
-
Упражнение 12
Пусть А и В точки плоскости, c - прямая. Найдите геометрическое место точек прямой c, расположенных ближе к А, чем к В. В каком случае таких точек нет? Ответ: Часть прямой c, лежащая внутри полуплоскости, определяемой серединным перпендикуляром к отрезку AB и точкой A. Если прямая c целиком лежит в полуплоскости, определяемой серединным перпендикуляром и точкой B, то таких точек нет.
-
Упражнение 13
Даны три точки: А, В, С. Найдите точки, которые одинаково удалены от точек А и В и находятся на расстоянии R от точки С. Ответ: Точки пересечения серединного перпендикуляра к отрезку AB и окружности с центром в точке C и радиусом R.
-
Упражнение 14
Ответ: Искомое ГМТ является пересечением круга и полуплоскости. Даны две точки Aи B. Найдите ГМТ C, для которых CACB AB. Пересечением каких фигур является искомое ГМТ.
-
Упражнение 15
Даны три точки A, B, C. Найдите ГМТ X, для которых AX BX и BX CX. Пересечением каких фигур является искомое ГМТ. Ответ: Искомое ГМТ является пересечением двух полупространств, определяемых серединными перпендикулярами к отрезкам AB и BC.
-
Упражнение 16
Даны три точки A, B, C. Найдите ГМТ X, для которых AX BX или BX CX. Объединением каких фигур является искомое ГМТ. Ответ: Искомое ГМТ является объединением двух полупространств, определяемых серединными перпендикулярами к отрезкам AB и BC.
-
Биссектриса угла
Теорема. Биссектриса угла является ГМТ, лежащих внутри этого угла и одинаково удаленных от его сторон. Доказательство. Рассмотрим угол c вершиной в точке О и сторонами а,b. Пусть точка С лежит внутри данного угла. Опустим из нееперпендикуляры СА и CB на стороны а и b. Если CA = CB, то прямоугольные треугольники АOС и ВOС равны (по гипотенузе и катету). Следовательно, углы AOC и BOC равны. Значит, точка C принадлежит биссектрисе угла.Обратно, если точка C принадлежит биссектрисе угла, то прямоугольные треугольники AOC и BOC равны (по гипотенузе и острому углу). Следовательно, AC = BC. Значит, точка С одинаково удалена от сторон данного угла.
-
Упражнение 17
Постройте геометрическое место внутренних точекугла AOB, равноудаленных от его сторон.
-
Упражнение 18
На прямой c отметьте точку C, равноудаленную от сторон угла AOB.
-
Упражнение 19
Что является геометрическим местом центров окружностей касающихся двух данных пересекающихся прямых? Ответ: Биссектрисы углов, образующихся при пересечении данных прямых, без точки пересечения этих прямых.
-
Упражнение 20
Ответ: а) Точки, принадлежащие биссектрисам четырех углов, образованных данными прямыми; б) внутренности двух вертикальных углов, образованных биссектрисами. Пусть a и b - пересекающиеся прямые. Найдите геометрическое место точек: а) одинаково удаленных от a и b; б) расположенных ближе к a, чем к b.
-
Упражнение 21
На прямойc, пересекающей стороны угла, найдите точкуC, одинаково удаленную от этих сторон. Ответ: Точка пересечения данной прямой с биссектрисой данного угла.
-
Упражнение 22
Дан угол АOB и точки M, N на его сторонах. Внутри угла найдите точку, одинаково удаленную от точек M и N и находящуюся на одинаковом расстоянии от сторон угла. Ответ: Точка пересечения серединного перпендикуляра к MN с биссектрисой угла.
Нет комментариев для данной презентации
Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.