Презентация на тему "Перпендикуляр и наклонная"

Презентация: Перпендикуляр и наклонная
Включить эффекты
1 из 17
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
3.0
2 оценки

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Скачать презентацию (0.18 Мб). Тема: "Перпендикуляр и наклонная". Предмет: математика. 17 слайдов. Добавлена в 2017 году. Средняя оценка: 3.0 балла из 5.

  • Формат
    pptx (powerpoint)
  • Количество слайдов
    17
  • Слова
    геометрия
  • Конспект
    Отсутствует

Содержание

  • Презентация: Перпендикуляр и наклонная
    Слайд 1

    ПЕРПЕНДИКУЛЯР И НАКЛОННАЯ

    Пусть точка A не принадлежит плоскости π. Проведем прямую a, проходящую через эту точку и перпендикулярную π. Точку пересечения прямой a с плоскостью π обозначим O. Отрезок AO называется перпендикуляром, опущенным из точки A на плоскость π. Наклонной к плоскости называется прямая, пересекающая эту плоскость и не перпендикулярная ей. Наклонной называют также отрезок, соединяющий точку, не принадлежащую плоскости, с точкой плоскости, и не являющийся перпендикуляром.

  • Слайд 2

    Теорема о перпендикуляре и наклонной

    Теорема.Перпендикуляр, опущенный из точки на плоскость, короче всякой наклонной, проведенной из той же точки к той же плоскости. Доказательство.Пусть AB – наклонная к плоскости α, AO – перпендикуляр, опущенный на эту плоскость. Соединим отрезком точки O и B. Треугольник AOB прямоугольный, AB – гипотенуза, AO – катет. Следовательно, AO

  • Слайд 3

    Теорема о трех перпендикулярах

    Теорема.Если прямая, лежащая в плоскости, перпендикулярна ортогональной проекции наклонной к этой плоскости, то она перпендикулярна и самой наклонной. Доказательство. Пусть прямая а плоскости α перпендикулярна проекции OB наклонной АВ. Тогда она будет перпендикулярна двум пересекающимся прямым OB и AO. По признаку перпендикулярности прямой и плоскости, прямая а перпендикулярна плоскости АOВ и, следовательно, она будет перпендикулярна наклонной АВ.

  • Слайд 4

    Упражнение 1

    Верно ли утверждение: «Если из двух различных точек, не принадлежащих плоскости, проведены к ней две равные наклонные, то их проекции тоже равны»? Ответ: Нет.

  • Слайд 5

    Упражнение 2

    К плоскости прямоугольника ABCD в точке пересечения диагоналей восстановлен перпендикуляр. Верно ли утверждение о том, что произвольная точка M этого перпендикуляра равноудалена от вершин прямоугольника? Ответ: Да.

  • Слайд 6

    Упражнение 3

    Точка M равноудалена от всех точек окружности. Верно ли утверждение о том, что она принадлежит перпендикуляру к плоскости окружности, проведённому через её центр? Ответ: Да.

  • Слайд 7

    Упражнение 4

    Найдите ГМ оснований наклонных одинаковой длины, проведённых к данной плоскости из данной точки. Ответ: Окружность.

  • Слайд 8

    Упражнение 5

    Основание ABCD пирамиды SABCD – прямоугольник, AB

  • Слайд 9

    Упражнение 6

    Из точки A к данной плоскости проведены перпендикуляр и наклонная, пересекающие плоскость соответственно в точках B и C. Найдите проекцию отрезка AC, если AC = 37 см, AB = 35 см. Ответ: 12 см.

  • Слайд 10

    Упражнение 7

    Из точки A к данной плоскости проведены перпендикуляр и наклонная, пересекающие плоскость соответственно в точках B и C. Найдите отрезок AC, если AB = 6 см, BAC = 60°. Ответ: 12 см.

  • Слайд 11

    Упражнение 8

    Из точки A к данной плоскости проведены перпендикуляр и наклонная, пересекающие плоскость соответственно в точках B и C. Найдите отрезок AB, если AC =см, BC = 3AB. Ответ: 2 см.

  • Слайд 12

    Упражнение 9

    Отрезки двух наклонных, проведенных из одной точки к плоскости, равны 15 см и 20 см. Проекция одного из этих отрезков равна 16 см. Найдите проекцию другого отрезка. Ответ: 9 см.

  • Слайд 13

    Упражнение 10

    Отрезок BC длиной 12 см является проекцией отрезка AC на плоскость . Точка D принадлежит отрезку AC и AD:DC = 2:3. Найдите отрезок AD и его проекцию на плоскость , если известно, что AB = 9 см. Ответ: 6 см; 4,8 см.

  • Слайд 14

    Упражнение 11

    Дан прямоугольный треугольник ABC, катеты которого AC и BC равны соответственно 20 и 15 см. Через вершину A проведена плоскость , параллельная прямой BC. Проекция одного из катетов на эту плоскость равна 12 см. Найдите проекцию гипотенузы. Ответ: см.

  • Слайд 15

    Упражнение 12

    Сторона ромба равна a, острый угол 60°. Через одну из сторон ромба проведена плоскость. Проекция другой стороны на эту плоскость равна b. Найдите проекции диагоналей ромба. Ответ: b и .

  • Слайд 16

    Упражнение 13

    Найдите геометрическое место точек в пространстве, равноудаленных от двух данных точек. Ответ: Плоскость, проходящая через середину отрезка, соединяющего данные точки, и перпендикулярная этому отрезку.

  • Слайд 17

    Упражнение 14

    Найдите геометрическое место точек в пространстве, равноудаленных от трех данных точек, не принадлежащих одной прямой. Ответ: Прямая, проходящая через центр описанной окружности треугольника с вершинами в данных точках, и перпендикулярная плоскости этого треугольника.

Посмотреть все слайды

Сообщить об ошибке