Презентация на тему "Задачи на построение"

Презентация: Задачи на построение
Включить эффекты
1 из 8
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
5.0
1 оценка

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Презентация на тему "Задачи на построение" по математике. Состоит из 8 слайдов. Размер файла 0.16 Мб. Каталог презентаций в формате powerpoint. Можно бесплатно скачать материал к себе на компьютер или смотреть его онлайн с анимацией.

  • Формат
    pptx (powerpoint)
  • Количество слайдов
    8
  • Слова
    геометрия
  • Конспект
    Отсутствует

Содержание

  • Презентация: Задачи на построение
    Слайд 1

    Задачи на построение

    Основными чертежными инструментами, с помощью которых производятся геометрические построения, являются линейка и циркуль. С помощью циркуля проводят окружности с данным центром и данного радиуса. В частности, с помощью циркуля на луче от его начала можно отложить отрезок, равный данному. С помощью линейки через две заданные точки проводят прямую.

  • Слайд 2

    Задача 1

    По данному рисунку объясните, как построить серединный перпендикуляр к заданному отрезку. Решение.Пусть АВ – данный отрезок. Опишем окружности с центрами в точках А и В и радиусом, большим половины АВ. Обозначим точки их пересечения, лежащие по разные стороны от прямой АВ, через С и D. Точки Си Dодинаково удалены от концов отрезка АВ. Следовательно, они принадлежат серединному перпендикуляру и, значит, прямая CD и будет искомым серединным перпендикуляром.

  • Слайд 3

    Задача 2

    По данному рисунку объясните, как из данной точки, не принадлежащей данной прямой, опустить перпендикуляр на эту прямую. В противном случае проведем окружность с центром в точке C и радиусом CA. Она пересечет прямую a в точке A и некоторой точке B. Так как AC = BC, то точка C принадлежит серединному перпендикуляру к отрезку AB. Поэтому искомый перпендикуляр CO будет лежать на серединном перпендикуляре к отрезку AB. После этого можно воспользоваться построением серединного перпендикуляра из предыдущей задачи, Решение.Пусть C данная точка, a – прямая. Отметим на этой прямой какую-нибудь точку A. Если отрезок CA перпендикулярен a, то он является искомым.

  • Слайд 4

    Задача 3

    По данному рисунку объясните, как построить биссектрису данного угла. Решение.Опишем окружность с центром в вершине О данного угла, пересекающую стороны угла в точках А и В. Затем этим же раствором циркуля с центрами в точках А и В опишем еще две окружности. Их точку пересечения, отличную от О, обозначим С, и проведем луч ОС. Треугольники ОАС и ОВС равны по третьему признаку равенства треугольников. Следовательно, AOC = BOC, т.е. луч ОС является искомой биссектрисой.

  • Слайд 5

    Задача 4

    По данному рисунку объясните, как построить угол, равный данному, одна из сторон которого совпадает с данным лучом.

  • Слайд 6

    Задача 5

    По данному рисунку объясните, как построить треугольник АВС с данными сторонами АВ=с, АС=b, ВС=a.

  • Слайд 7

    Задача 6

    По данному рисунку объясните, как построить касательную к данной окружности, проходящую через данную точку вне этой окружности. Решение: Пусть дана окружность с центром O и радиусом R. Точка A лежит вне этой окружности. Построим окружность с центром O и радиусом 2R и окружность с центром A и радиусом AO. Эти окружности пересекаются в двух точках C1 и C2. Соединяем эти точки с центром O и обозначим точки пересечения отрезков C1O, C2O с окружностью B1 и B2 соответственно. Они и будут искомыми точками касания. Прямые AB1 и AB2 будут искомыми касательными.

  • Слайд 8

    Задача 7

    По данному рисунку объясните, как построить середину заданного отрезка. Решение: Строим серединный перпендикуляр к данному отрезку и находим его точку пересечения с этим отрезком. Она и будет искомой серединой.

Посмотреть все слайды

Сообщить об ошибке