Презентация на тему "История тригонометрии" 10 класс

Презентация: История тригонометрии
Включить эффекты
1 из 25
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
0.0
0 оценок

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Интересует тема "История тригонометрии"? Лучшая powerpoint презентация на эту тему представлена здесь! Данная презентация состоит из 25 слайдов. Также представлены другие презентации по математике для 10 класса. Скачивайте бесплатно.

  • Формат
    pptx (powerpoint)
  • Количество слайдов
    25
  • Аудитория
    10 класс
  • Слова
    алгебра
  • Конспект
    Отсутствует

Содержание

  • Презентация: История тригонометрии
    Слайд 1

    Департамент образования и науки Брянской области ГБОУ СПО «Дятьковский индустриальный техникум»

    История тригонометрии Греция Индия Аравия Россия Европа Презентацию подготовила: Студентка группы П-25 Бирюкова Елена Преподаватель математики: Манихина Т.А..

  • Слайд 2

    Потребность в решении треугольников раньше всего возникла в астрономии: и в течении долгого времени тригонометрия развивалась изучалась как один из отделов астрономии. Насколько известно: способы решения треугольников (сферических) первые были письменно изложены греческим астрономом Гиппархом в середине 2 века до н.э. Наивысшими достижениями греческая тригонометрия обязана астроному Птолемею (2 век н.э.), создателю геоцентрической системы мира, господствовавшей до Коперника. Тригонометрия– от греч. «измерение треугольников». Возникновение  тригонометрии связано с землемерением, астрономией и строительным делом. Древняя Греция

  • Слайд 3

    Греческие астрономы не знали синусов, косинусов и тангенсов. Вместо таблиц этих величин они употребляли таблицы: позволяющие отыскать хорду окружности по стягиваемой дуге. Дуги измерялись в градусах и минутах; хорды тоже измерялись градусами (один градус составлял шестидесятую частьрадиуса), минутами и секундами. Это шестидесятеричное подразделение греки заимствовали у вавилонян. A B

  • Слайд 4

    Значительные высоты достигла тригонометрия и у индийскихсредневековых астрономов. Главным достижением индийских астрономов стала : Замена хорд синусами, что позволило вводить различные функции, связанные со сторонами и углами прямоугольного треугольника. Таким образом в Индии было положено начало тригонометрии как учению о тригонометрических величинах. Индийские ученые пользовались различными тригонометрическими соотношениями, в том числе и теми, которые используются в современной науке. Индия

  • Слайд 5

    Индийцы также знали: Формулы для кратких углов sin na , cos na, где n=2,3,4,5. Первая таблица синусов «Сурья-сиддханте» у Ариабхаты. Она приведена через 3,45. Позднее ученые составили более подробные таблицы: например Бхаскара приводит таблицу синусов через 1 . Южноиндийские математики в 16 веке добились больших успехов в области суммирования бесконечных числовых рядов. По-видимому, они занимались этими исследованиями, когда искали способы вычисления более точных значений числа П. Нилаканта словесно приводит правила разложения арктангенса в бесконечный степенной ряд. А в анонимном трактате «Каранападдхати» («Техника вычислений») даны правила разложения синуса и косинуса в бесконечные степенные ряды. Нужно сказать, что в Европе к подобным результатам подошли лишь в 17-18 веках.

  • Слайд 6

    Значительный вклад в развитие тригонометрии внесли арабские ученые аль-Батани (850-929) и Абу-ль-Вефа Мухамед-бен Мухамед (940-998), который составил таблицы синусов и тангенсов через 10’ с точностью до 1/604. Теорему синусов уже знали индийский ученый Бхаскара (р. 1114, год смерти неизвестен) и азербайджанский астроном и математик Насиреддин Туси Мухамед (1201-1274). Кроме того, Насиреддин Туси в своей работе «Трактат о полном четырехстороннике» изложил плоскую и сферическую тригонометрию как самостоятельную дисциплину. Аль-Батани Насиреддин Туси Бхаскара Ачарья Аравия

  • Слайд 7

    1) Ряды для синуса и косинуса вывел И.Ньютон в 1666 г., 2) Ряд арктангенса найден Дж.Грегори в 1671 г. и Г.В.Лейбницем в 1673 г. 3) Теорему тангенсов доказал Региомонтан (латинизированное имя немецкого астронома и математика Иоганна Мюллера (1436-1476)). Региомонтан составил также подробные тригонометрические таблицы; Основные достижения: Дальнейшее развитие тригонометрия получила в трудах выдающихся астрономов Николая Коперника (1473-1543) – творца гелиоцентрической системы мира, Тихо Браге (1546-1601) и Иогана Кеплера (1571-1630), а также в работах математика Франсуа Виета (1540-1603), который полностью решил задачу об определениях всех элементов плоского или сферического треугольника по трем данным. ЕВРОПА

  • Слайд 8

    Современные обозначения синуса и косинуса знаками sin x и cos x были впервые введены в 1739 году И. Бернулли в письме к петербургскому математику Л. Эйлеру. Последний пришел к выводу, что эти обозначения весьма удобны, и стал употреблять их в своих математических работах. Кроме того, Эйлер вводит следующие сокращенные обозначения тригонометрических функций угла x: tang x, cot x, sec x, cosec x. Далее Эйлер установил связь тригонометрических функций с показательными и дал правило для определения знаков функций в различных четвертях круга. Россия Даниил Бернулли Леонард Эйлер

  • Слайд 9

    В IV-V веках появился уже специальный термин в трудах по астрономии великого индийского учёного Ариабхаты, именем которого назван первый индийский спутник Земли. Отрезок АМ (рис. 1) он назвал ардхаджива (ардха – половина, джива – тетива лука, которую напоминает хорда). Позднее появилось более краткое название джива. A Арабскими математиками  в IX веке это слово было заменено на арабское слово джайб (выпуклость). При переводе арабских математических текстов в  веке оно было заменено латинским синус (sinus – изгиб, кривизна).

  • Слайд 10

    Слово косинус намного моложе. Косинус – это сокращение латинского выражения completely sinus, т. е. “дополнительный синус” (или иначе “синус дополнительной дуги”; cosa =  sin( 90° - a)).

  • Слайд 11

    от латинского tanger (касаться), появилось в 1583 г.  Tangens переводится как «касающийся» (линия тангенсов – касательная к единичной окружности) Тангенс Тангенс (а также котангенс) введен в X веке арабским математиком Абу-ль-Вафой, который составил и первые таблицы для нахождения тангенсов и котангенсов. Однако эти открытия долгое время оставались неизвестными европейским ученым, и тангенсы были заново открыты лишь в XIV веке немецким математиком, астрономом Регимонтаном (1467 г.). Он доказал теорему тангенсов.  Региомонтан составил также подробные тригонометрические таблицы; благодаря его трудам плоская и сферическая тригонометрия стала самостоятельной дисциплиной и в Европе.

  • Слайд 12

    Викторина!

  • Слайд 13

    Какой из русских пословиц наиболее соответствует график функции y = sin x и почему? Чем дальше в лес, тем больше дров. Выше меры конь не скачет. Дальше кумы, меньше греха. Вопрос № 1

  • Слайд 14

    Верно! Следующий вопрос!

  • Слайд 15

    Неверно!Попробуйте еще раз! Вернуться к вопросу!

  • Слайд 16

    Региомонтан Исаак Ньютон Аль- Хорезми Вопрос № 2 Кто ввел названия тригонометрических функций: A) Тангенса?

  • Слайд 17

    Правильно! Следующий вопрос!

  • Слайд 18

    Неправильно! Вернуться к вопросу!

  • Слайд 19

    Арабские ученые Римские ученые Европейцы Вопрос № 3 Кто ввел названия тригонометрических функций: Б) Синуса?

  • Слайд 20

    Умница! Следующий вопрос!

  • Слайд 21

    Неверно!Попробуйте еще раз! Вернуться к вопросу!

  • Слайд 22

    «учение о синусах» «измерение косинусов» «измерение треугольников» Вопрос № 4 Что означает слово «тригонометрия»?

  • Слайд 23

    Верно! Поздравляю! Завершить тест

  • Слайд 24

    Не торопитесь! Вернуться к вопросу!

  • Слайд 25

    Спасибо за внимание!

Посмотреть все слайды

Сообщить об ошибке