Презентация на тему "Многогранники" 10 класс

Презентация: Многогранники
Включить эффекты
1 из 13
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
3.7
9 оценок

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Посмотреть презентацию на тему "Многогранники" для 10 класса в режиме онлайн с анимацией. Содержит 13 слайдов. Самый большой каталог качественных презентаций по математике в рунете. Если не понравится материал, просто поставьте плохую оценку.

Содержание

  • Презентация: Многогранники
    Слайд 1

    Многогранники Геометрия 10 - 11 класс Подготовила Семенченко Ирина Николаевна – учитель математики высшей категории МОУСОШ №7 г. Гулькевичи

  • Слайд 2

    Параллелепипед || АВСDи A1B1C1D1 – равные параллелограммы – основания АА1|| ВВ1|| СС1|| DD1 – боковые ребра Все грани параллелограммы. AA1B1B; BB1C1C; CC1D1D; AA1D1D – боковые грани DB1– диагональ Свойства. 1. Противолежащие грани параллелепипеда параллельны и равны. 2. Диагонали параллелепипеда пересекаются в одной точке и точкой пересечения делятся пополам. А В С D А1 В1 С1 D1

  • Слайд 3

    Прямой параллелепипед – это параллелепипед, у которого боковые грани являются прямоугольниками. А В С D A1 B1 С1 D1 a b c

  • Слайд 4

    Прямоугольный параллелепипед – это параллелепипед, у которого все грани прямоугольники. а b c a –длина,b – ширина, с – высота, d – диагональ d d2 = a2 + b2 + c2

  • Слайд 5

    Призма : основания – равные n – угольники, лежащие в параллельных плоскостях, боковые грани – параллелограммы. Наклонная – боковые грани – параллелограммы. H H1 A k F M N P D HH1– высота призмы AH (k) – боковое ребро призмы FMNPD – сечение, перпендикулярное боковому ребру

  • Слайд 6

    Прямая призма – боковые грани – прямоугольники. Куб а а а d все грани - квадраты H

  • Слайд 7

    Пирамида – это многогранник, состоящий из n-угольника А1А2А3...Аn (основание) и n треугольников (боковые грани), имеющих общую вершину (Р). Р А1 А2 А3 Аn H РА1; РА2; РА3; ... ; РАn – боковые ребра А1А2; ... ;А1Аn – ребра основания РH – высота пирамиды - h h

  • Слайд 8

    Правильная пирамида основание – правильный многоугольник, вершина проецируется в центр основания; боковые ребра – равны; боковые грани – равные равнобедренные треугольники. H – высота, h – апофема H h

  • Слайд 9

    AB = BC = AC = a Правильная треугольная пирамида H – высота, h – апофема A O B C h H S D a

  • Слайд 10

    Правильная четырехугольная пирамида h – апофема, H – высота, AB = BC = CD = DA = a (в основании – квадрат) H h a a A B D O P К К – середина DC C а – сторона основания

  • Слайд 11

    PA1A2…An – произвольная пирамида α – плоскость основания β – секущая плоскость, PB1B2…Bn – пирамида Усеченная пирамида β α P A1 A2 A3 An B1 B3 Bn B2 O O1 H || B1B2…Bn– верхнее основание A1A2…An – нижнее снование A1B1B2A2; …; AnBnB1A1 – боковые грани – трапеции A1B1; A2B2; …; AnBn – боковые ребра OO1= H – высота

  • Слайд 12

    Правильная треугольная усеченная пирамида – боковые грани–равные между собой равнобокие трапеции. ΔABC иΔA1B1C1 – равносторонние OO1 = H – высота КК1 = h – апофема A C A1 B1 C1 O1 O H K1 K h B a b

  • Слайд 13

    Правильная четырехугольная усеченная пирамида – боковые грани – равные между собой равнобокие трапеции. ABCD и A1B1C1D1 – квадраты OO1 = H – высота KK1 = h – апофема A1 A B C D B1 C1 D1 O O1 H K K1 h a b

Посмотреть все слайды

Сообщить об ошибке