Презентация на тему "Подготовка к ЕГЭ В13. Задачи на концентрацию и сплавы" 11 класс

Презентация: Подготовка к ЕГЭ В13. Задачи на концентрацию и сплавы
Включить эффекты
1 из 17
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
2.7
2 оценки

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Интересует тема "Подготовка к ЕГЭ В13. Задачи на концентрацию и сплавы"? Лучшая powerpoint презентация на эту тему представлена здесь! Данная презентация состоит из 17 слайдов. Средняя оценка: 2.7 балла из 5. Также представлены другие презентации по математике для 11 класса. Скачивайте бесплатно.

Содержание

  • Презентация: Подготовка к ЕГЭ В13. Задачи на концентрацию и сплавы
    Слайд 1

    Липлянская Татьяна Геннадьевна учитель математики МОУ «СОШ №3» города Ясного Оренбургской области

  • Слайд 2

    Задачи на концентрацию, сплавы

  • Слайд 3

    Изучить условия задачи. Выбрать неизвестные величины (их обозначают буквами х, у и т.д.), относительно которых составить пропорции, этим, мы создаем математическую модель ситуации, описанной в условии задачи. Используя условия задачи, определить все взаимосвязи между данными величинами. Составить математическую модель задачи и решить ее. Изучить полученное решение, провести критический анализ результата.

  • Слайд 4
  • Слайд 5

    1) 4 · 0,12 = 0,48 (л) вещества в растворе 2) 12% = 0,12 Ответ: 4 В сосуд, содержащий 4 литров 12-процентного водного раствора некоторого вещества, добавили 8 литров воды. Сколько процентов составляет концентрация получившегося раствора? 1 Сколько вещества было в растворе? 5 л 12% р-р 7 л Задачи 17-18

  • Слайд 6

    Смешали некоторое количество 15-процентного раствора некоторого вещества с таким же количеством 21-процентного раствора этого вещества. Сколько процентов составляет концентрация получившегося раствора? x 0,15x 0,21x + + 2 Ответ: 18 15% = 0,15 21% = 0,21 15% р-р 21 % р-р x x x 0,15x 0,21x Задачи 19-20

  • Слайд 7

    Смешали 4 литра 15-процентного водного раствора некоторого вещества с 6 литрами 25-процентного водного раствора этого же вещества. Сколько процентов составляет концентрация получившегося раствора? 6 4 + 0,6 1,5 + 1) 4 · 0,15 = 0,6 (л) вещества в 1 растворе 2) 6 · 0,25 = 1,5 (л) вещества во 2 растворе 3 15% = 0,15 25% = 0,25 Сколько вещества было в растворе? 4 6 0,6 1,5 Ответ: 21 Задачи 21-22

  • Слайд 8

    это 19 кг 90% 95% 10% Виноград содержит 90% влаги, а изюм  — 5%. Сколько килограммов винограда требуется для получения 50 килограммов изюма? 5% 50 кг изюма 1) 50 · 0,95 = 47,5 (кг) сухого вещества в изюме это 19 кг 47,5 кг сухого в-ва в винограде составляет 10% всего винограда 2) 47,5 · 10 = 475 (кг) винограда надо взять 4 Сколько сухого вещества в 20 кг изюма? Ответ: 475 =0,95

  • Слайд 9

    10 кг 0,93y Смешав 91-процентный и 93-процентный растворы кислоты и добавив 10 кг чистой воды, получили 55-процентный раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг 50-процентного раствора той же кислоты, то получили бы 75-процентный раствор кислоты. Сколько килограммов 91-процентного раствора использовали для получения смеси? y 0,91x + x + +10 = 55 5 93 % р-р 55% р-р x y 0,91x 0,93y ·100%

  • Слайд 10

    0,93y 0,93y 0,91x y Смешав 91-процентный и 93-процентный растворы кислоты и добавив 10 кг чистой воды, получили 55-процентный раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг 50-процентного раствора той же кислоты, то получили бы 75-процентный раствор кислоты. Сколько килограммов 91-процентного раствора использовали для получения смеси? x y 0,91x + x + +10 = 75 10 · 0,5 = 5 (кг) кислоты в р-ре +5 ? Искомая величина 50% = 0,5 · 100

  • Слайд 11

    Составим и решим систему уравнений: Ответ: 17,5 Задачи 25-28

  • Слайд 12

    Имеются два сосуда. Первый содержит 30 кг, а второй  — 20 кг раствора кислоты различной концентрации. Если эти растворы смешать, то получится раствор, содержащий 68% кислоты. Если же смешать равные массы этих растворов, то получится раствор, содержащий 70% кислоты. Сколько килограммов кислоты содержится в первом сосуде? y x + + = 68 30 20 0,3x 0,2y 6 30 20 1 уравнение 0,3x 0,2y

  • Слайд 13

    Имеются два сосуда. Первый содержит 30 кг, а второй  — 20 кг раствора кислоты различной концентрации. Если эти растворы смешать, то получится раствор, содержащий 68% кислоты. Если же смешать равные массы этих растворов, то получится раствор, содержащий 70% кислоты. Сколько килограммов кислоты содержится в первом сосуде? 0,01y 1 1 y x 0,01x + + = 70 Возьмем по 1 кг 1 1 2 уравнение 0,01x 0,01y

  • Слайд 14

    Составим и решим систему уравнений: Ответ: 18 Задачи 29-30

  • Слайд 15

    0,1y 0,3x y x Имеется два сплава. Первый сплав содержит 30% никеля, второй  — 10% никеля. Из этих двух сплавов получили третий сплав массой 100 кг, содержащий 12% никеля. На сколько килограммов масса первого сплава меньше массы второго? + + 1 уравнение = 12 100 2 уравнение x + y = 100 7 30%=0,3 x y 10%=0,1 30 10 0,3x 0,1y Ответ: 80

  • Слайд 16

    0,4(x+3) x+3 x Первый сплав содержит 10% меди, второй  — 40% меди. Масса второго сплава больше массы первого на 3 кг. Из этих двух сплавов получили третий сплав, содержащий 30% меди. Найдите массу третьего сплава. Ответ дайте в килограммах. 40 10 0,1x + + Уравнение = 30 8 0,4 0,1 x x+3 0,1x 0,4(x+3) Ответ: 9 10%=0,1 40%=0,4

  • Слайд 17

    Использован материал с сайта http://mathege.ru/or/ege/Main

Посмотреть все слайды

Конспект

Задачи на проценты

В 2008 году в городском квартале проживало 60000 человек. В 2009 году, в результате строительства новых домов, число жителей выросло на 5%, а в 2010 году — на 5% по сравнению с 2009 годом. Сколько человек стало проживать в квартале в 2010 году?

В 2008 году в городском квартале проживало 40000 человек. В 2009 году, в результате строительства новых домов, число жителей выросло на 7%, а в 2010 году — на 1% по сравнению с 2009 годом. Сколько человек стало проживать в квартале в 2010 году?

В 2008 году в городском квартале проживало 60000 человек. В 2009 году, в результате строительства новых домов, число жителей выросло на 4%, а в 2010 году — на 3% по сравнению с 2009 годом. Сколько человек стало проживать в квартале в 2010 году?

В 2008 году в городском квартале проживало 30000 человек. В 2009 году, в результате строительства новых домов, число жителей выросло на 5%, а в 2010 году — на 10% по сравнению с 2009 годом. Сколько человек стало проживать в квартале в 2010 году?

Семья состоит из мужа, жены и их дочери студентки. Если бы зарплата мужа увеличилась втрое, общий доход семьи вырос бы на 108%. Если бы стипендия дочери уменьшилась втрое, общий доход семьи сократился бы на 4%. Сколько процентов от общего дохода семьи составляет зарплата жены?

Семья состоит из мужа, жены и их дочери студентки. Если бы зарплата мужа увеличилась вчетверо, общий доход семьи вырос бы на 210%. Если бы стипендия дочери уменьшилась вдвое, общий доход семьи сократился бы на 1%. Сколько процентов от общего дохода семьи составляет зарплата жены?

Семья состоит из мужа, жены и их дочери студентки. Если бы зарплата мужа увеличилась вчетверо, общий доход семьи вырос бы на 192%. Если бы стипендия дочери уменьшилась втрое, общий доход семьи сократился бы на 4%. Сколько процентов от общего дохода семьи составляет зарплата жены?

Семья состоит из мужа, жены и их дочери студентки. Если бы зарплата мужа увеличилась вдвое, общий доход семьи вырос бы на 56%. Если бы стипендия дочери уменьшилась вчетверо, общий доход семьи сократился бы на 6%. Сколько процентов от общего дохода семьи составляет зарплата жены?

Цена холодильника в магазине ежегодно уменьшается на одно и то же число процентов от предыдущей цены. Определите, на сколько процентов каждый год уменьшалась цена холодильника, если, выставленный на продажу за 19100 рублей, через два года был продан за 15471 рубль.

Компания "Альфа" начала инвестировать средства в перспективную отрасль в 2001 году, имея капитал в размере 4000 долларов. Каждый год, начиная с 2002 года, она получала прибыль, которая составляла 100% от капитала предыдущего года. А компания "Бета" начала инвестировать средства в другую отрасль в 2005 году, имея капитал в размере 5500 долларов, и, начиная с 2006 года, ежегодно получала прибыль, составляющую 300% от капитала предыдущего года. На сколько долларов капитал одной из компаний был больше капитала другой к концу 2009 года, если прибыль из оборота не изымалась?

Компания "Альфа" начала инвестировать средства в перспективную отрасль в 2001 году, имея капитал в размере 3000 долларов. Каждый год, начиная с 2002 года, она получала прибыль, которая составляла 100% от капитала предыдущего года. А компания "Бета" начала инвестировать средства в другую отрасль в 2005 году, имея капитал в размере 6000 долларов, и, начиная с 2006 года, ежегодно получала прибыль, составляющую 200% от капитала предыдущего года. На сколько долларов капитал одной из компаний был больше капитала другой к концу 2008 года, если прибыль из оборота не изымалась?

Цена холодильника в магазине ежегодно уменьшается на одно и то же число процентов от предыдущей цены. Определите, на сколько процентов каждый год уменьшалась цена холодильника, если, выставленный на продажу за 19400 рублей, через два года был продан за 15714 рублей.

Дима, Антон, Паша и Гоша учредили компанию с уставным капиталом 150000 рублей. Дима внес 26% уставного капитала, Антон — 60000 рублей, Паша — 0,2 уставного капитала, а оставшуюся часть капитала внес Гоша. Учредители договорились делить ежегодную прибыль пропорционально внесенному в уставной капитал вкладу. Какая сумма от прибыли 1100000 рублей причитается Гоше? Ответ дайте в рублях.

Дима, Антон, Никита и Гоша учредили компанию с уставным капиталом 200000 рублей. Дима внес 27% уставного капитала, Антон — 55000 рублей, Никита — 0,1 уставного капитала, а оставшуюся часть капитала внес Гоша. Учредители договорились делить ежегодную прибыль пропорционально внесенному в уставной капитал вкладу. Какая сумма от прибыли 1000000 рублей причитается Гоше? Ответ дайте в рублях.

Митя, Антон, Никита и Денис учредили компанию с уставным капиталом 100000 рублей. Митя внес 25% уставного капитала, Антон — 55000 рублей, Никита — 0,12 уставного капитала, а оставшуюся часть капитала внес Денис. Учредители договорились делить ежегодную прибыль пропорционально внесенному в уставной капитал вкладу. Какая сумма от прибыли 700000 рублей причитается Денису? Ответ дайте в рублях.

Дима, Артем, Гриша и Игорь учредили компанию с уставным капиталом 150000 рублей. Дима внес 24% уставного капитала, Артем — 60000 рублей, Гриша — 0,22 уставного капитала, а оставшуюся часть капитала внес Игорь. Учредители договорились делить ежегодную прибыль пропорционально внесенному в уставной капитал вкладу. Какая сумма от прибыли 600000 рублей причитается Игорю? Ответ дайте в рублях.

Задачи на концентрацию и сплавы

В сосуд, содержащий 6 литров 24-процентного водного раствора некоторого вещества, добавили 3 литра воды. Сколько процентов составляет концентрация получившегося раствора?

В сосуд, содержащий 6 литров 20-процентного водного раствора некоторого вещества, добавили 6 литров воды. Сколько процентов составляет концентрация получившегося раствора?

Смешали некоторое количество 11-процентного раствора некоторого вещества с таким же количеством 17-процентного раствора этого вещества. Сколько процентов составляет концентрация получившегося раствора?

Смешали некоторое количество 17-процентного раствора некоторого вещества с таким же количеством 19-процентного раствора этого вещества. Сколько процентов составляет концентрация получившегося раствора?

Смешали 6 литров 5-процентного водного раствора некоторого вещества с 9 литрами 40-процентного водного раствора этого же вещества. Сколько процентов составляет концентрация получившегося раствора?

Смешали 9 литров 15-процентного водного раствора некоторого вещества с 11 литрами 35-процентного водного раствора этого же вещества. Сколько процентов составляет концентрация получившегося раствора?

Первый сплав содержит 5% меди, второй — 13% меди. Масса второго сплава больше массы первого на 8 кг. Из этих двух сплавов получили третий сплав, содержащий 11% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.

Первый сплав содержит 5% меди, второй — 13% меди. Масса второго сплава больше массы первого на 3 кг. Из этих двух сплавов получили третий сплав, содержащий 12% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.

Смешав 83-процентный и 84-процентный растворы кислоты и добавив 10 кг чистой воды, получили 67-процентный раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг 50-процентного раствора той же кислоты, то получили бы 77-процентный раствор кислоты. Сколько килограммов 83-процентного раствора использовали для получения смеси?

Смешав 22-процентный и 64-процентный растворы кислоты и добавив 10 кг чистой воды, получили 47-процентный раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг 50-процентного раствора той же кислоты, то получили бы 57-процентный раствор кислоты. Сколько килограммов 22-процентного раствора использовали для получения смеси?

Смешав 32-процентный и 84-процентный растворы кислоты и добавив 10 кг чистой воды, получили 34-процентный раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг 50-процентного раствора той же кислоты, то получили бы 39-процентный раствор кислоты. Сколько килограммов 32-процентного раствора использовали для получения смеси?

Смешав 91-процентный и 93-процентный растворы кислоты и добавив 10 кг чистой воды, получили 55-процентный раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг 50-процентного раствора той же кислоты, то получили бы 75-процентный раствор кислоты. Сколько килограммов 91-процентного раствора использовали для получения смеси?

Имеется два сосуда. Первый содержит 75 кг, а второй — 25 кг раствора кислоты различной концентрации. Если эти растворы смешать, то получится раствор, содержащий 67% кислоты. Если же смешать равные массы этих растворов, то получится раствор, содержащий 74% кислоты. Сколько килограммов кислоты содержится в первом сосуде?

Имеется два сосуда. Первый содержит 75 кг, а второй — 50 кг раствора кислоты различной концентрации. Если эти растворы смешать, то получится раствор, содержащий 52% кислоты. Если же смешать равные массы этих растворов, то получится раствор, содержащий 59% кислоты. Сколько килограммов кислоты содержится в первом сосуде?

Задачи на проценты

В 2008 году в городском квартале проживало 60000 человек. В 2009 году, в результате строительства новых домов, число жителей выросло на 5%, а в 2010 году — на 5% по сравнению с 2009 годом. Сколько человек стало проживать в квартале в 2010 году?

В 2008 году в городском квартале проживало 40000 человек. В 2009 году, в результате строительства новых домов, число жителей выросло на 7%, а в 2010 году — на 1% по сравнению с 2009 годом. Сколько человек стало проживать в квартале в 2010 году?

В 2008 году в городском квартале проживало 60000 человек. В 2009 году, в результате строительства новых домов, число жителей выросло на 4%, а в 2010 году — на 3% по сравнению с 2009 годом. Сколько человек стало проживать в квартале в 2010 году?

В 2008 году в городском квартале проживало 30000 человек. В 2009 году, в результате строительства новых домов, число жителей выросло на 5%, а в 2010 году — на 10% по сравнению с 2009 годом. Сколько человек стало проживать в квартале в 2010 году?

Семья состоит из мужа, жены и их дочери студентки. Если бы зарплата мужа увеличилась втрое, общий доход семьи вырос бы на 108%. Если бы стипендия дочери уменьшилась втрое, общий доход семьи сократился бы на 4%. Сколько процентов от общего дохода семьи составляет зарплата жены?

Семья состоит из мужа, жены и их дочери студентки. Если бы зарплата мужа увеличилась вчетверо, общий доход семьи вырос бы на 210%. Если бы стипендия дочери уменьшилась вдвое, общий доход семьи сократился бы на 1%. Сколько процентов от общего дохода семьи составляет зарплата жены?

Семья состоит из мужа, жены и их дочери студентки. Если бы зарплата мужа увеличилась вчетверо, общий доход семьи вырос бы на 192%. Если бы стипендия дочери уменьшилась втрое, общий доход семьи сократился бы на 4%. Сколько процентов от общего дохода семьи составляет зарплата жены?

Семья состоит из мужа, жены и их дочери студентки. Если бы зарплата мужа увеличилась вдвое, общий доход семьи вырос бы на 56%. Если бы стипендия дочери уменьшилась вчетверо, общий доход семьи сократился бы на 6%. Сколько процентов от общего дохода семьи составляет зарплата жены?

Цена холодильника в магазине ежегодно уменьшается на одно и то же число процентов от предыдущей цены. Определите, на сколько процентов каждый год уменьшалась цена холодильника, если, выставленный на продажу за 19100 рублей, через два года был продан за 15471 рубль.

Компания "Альфа" начала инвестировать средства в перспективную отрасль в 2001 году, имея капитал в размере 4000 долларов. Каждый год, начиная с 2002 года, она получала прибыль, которая составляла 100% от капитала предыдущего года. А компания "Бета" начала инвестировать средства в другую отрасль в 2005 году, имея капитал в размере 5500 долларов, и, начиная с 2006 года, ежегодно получала прибыль, составляющую 300% от капитала предыдущего года. На сколько долларов капитал одной из компаний был больше капитала другой к концу 2009 года, если прибыль из оборота не изымалась?

Компания "Альфа" начала инвестировать средства в перспективную отрасль в 2001 году, имея капитал в размере 3000 долларов. Каждый год, начиная с 2002 года, она получала прибыль, которая составляла 100% от капитала предыдущего года. А компания "Бета" начала инвестировать средства в другую отрасль в 2005 году, имея капитал в размере 6000 долларов, и, начиная с 2006 года, ежегодно получала прибыль, составляющую 200% от капитала предыдущего года. На сколько долларов капитал одной из компаний был больше капитала другой к концу 2008 года, если прибыль из оборота не изымалась?

Цена холодильника в магазине ежегодно уменьшается на одно и то же число процентов от предыдущей цены. Определите, на сколько процентов каждый год уменьшалась цена холодильника, если, выставленный на продажу за 19400 рублей, через два года был продан за 15714 рублей.

Дима, Антон, Паша и Гоша учредили компанию с уставным капиталом 150000 рублей. Дима внес 26% уставного капитала, Антон — 60000 рублей, Паша — 0,2 уставного капитала, а оставшуюся часть капитала внес Гоша. Учредители договорились делить ежегодную прибыль пропорционально внесенному в уставной капитал вкладу. Какая сумма от прибыли 1100000 рублей причитается Гоше? Ответ дайте в рублях.

Дима, Антон, Никита и Гоша учредили компанию с уставным капиталом 200000 рублей. Дима внес 27% уставного капитала, Антон — 55000 рублей, Никита — 0,1 уставного капитала, а оставшуюся часть капитала внес Гоша. Учредители договорились делить ежегодную прибыль пропорционально внесенному в уставной капитал вкладу. Какая сумма от прибыли 1000000 рублей причитается Гоше? Ответ дайте в рублях.

Митя, Антон, Никита и Денис учредили компанию с уставным капиталом 100000 рублей. Митя внес 25% уставного капитала, Антон — 55000 рублей, Никита — 0,12 уставного капитала, а оставшуюся часть капитала внес Денис. Учредители договорились делить ежегодную прибыль пропорционально внесенному в уставной капитал вкладу. Какая сумма от прибыли 700000 рублей причитается Денису? Ответ дайте в рублях.

Дима, Артем, Гриша и Игорь учредили компанию с уставным капиталом 150000 рублей. Дима внес 24% уставного капитала, Артем — 60000 рублей, Гриша — 0,22 уставного капитала, а оставшуюся часть капитала внес Игорь. Учредители договорились делить ежегодную прибыль пропорционально внесенному в уставной капитал вкладу. Какая сумма от прибыли 600000 рублей причитается Игорю? Ответ дайте в рублях.

Задачи на концентрацию и сплавы

В сосуд, содержащий 6 литров 24-процентного водного раствора некоторого вещества, добавили 3 литра воды. Сколько процентов составляет концентрация получившегося раствора?

В сосуд, содержащий 6 литров 20-процентного водного раствора некоторого вещества, добавили 6 литров воды. Сколько процентов составляет концентрация получившегося раствора?

Смешали некоторое количество 11-процентного раствора некоторого вещества с таким же количеством 17-процентного раствора этого вещества. Сколько процентов составляет концентрация получившегося раствора?

Смешали некоторое количество 17-процентного раствора некоторого вещества с таким же количеством 19-процентного раствора этого вещества. Сколько процентов составляет концентрация получившегося раствора?

Смешали 6 литров 5-процентного водного раствора некоторого вещества с 9 литрами 40-процентного водного раствора этого же вещества. Сколько процентов составляет концентрация получившегося раствора?

Смешали 9 литров 15-процентного водного раствора некоторого вещества с 11 литрами 35-процентного водного раствора этого же вещества. Сколько процентов составляет концентрация получившегося раствора?

Первый сплав содержит 5% меди, второй — 13% меди. Масса второго сплава больше массы первого на 8 кг. Из этих двух сплавов получили третий сплав, содержащий 11% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.

Первый сплав содержит 5% меди, второй — 13% меди. Масса второго сплава больше массы первого на 3 кг. Из этих двух сплавов получили третий сплав, содержащий 12% меди. Найдите массу третьего сплава. Ответ дайте в килограммах.

Смешав 83-процентный и 84-процентный растворы кислоты и добавив 10 кг чистой воды, получили 67-процентный раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг 50-процентного раствора той же кислоты, то получили бы 77-процентный раствор кислоты. Сколько килограммов 83-процентного раствора использовали для получения смеси?

Смешав 22-процентный и 64-процентный растворы кислоты и добавив 10 кг чистой воды, получили 47-процентный раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг 50-процентного раствора той же кислоты, то получили бы 57-процентный раствор кислоты. Сколько килограммов 22-процентного раствора использовали для получения смеси?

Смешав 32-процентный и 84-процентный растворы кислоты и добавив 10 кг чистой воды, получили 34-процентный раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг 50-процентного раствора той же кислоты, то получили бы 39-процентный раствор кислоты. Сколько килограммов 32-процентного раствора использовали для получения смеси?

Смешав 91-процентный и 93-процентный растворы кислоты и добавив 10 кг чистой воды, получили 55-процентный раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг 50-процентного раствора той же кислоты, то получили бы 75-процентный раствор кислоты. Сколько килограммов 91-процентного раствора использовали для получения смеси?

Имеется два сосуда. Первый содержит 75 кг, а второй — 25 кг раствора кислоты различной концентрации. Если эти растворы смешать, то получится раствор, содержащий 67% кислоты. Если же смешать равные массы этих растворов, то получится раствор, содержащий 74% кислоты. Сколько килограммов кислоты содержится в первом сосуде?

Имеется два сосуда. Первый содержит 75 кг, а второй — 50 кг раствора кислоты различной концентрации. Если эти растворы смешать, то получится раствор, содержащий 52% кислоты. Если же смешать равные массы этих растворов, то получится раствор, содержащий 59% кислоты. Сколько килограммов кислоты содержится в первом сосуде?

Скачать конспект

Сообщить об ошибке