Содержание
-
Математическая игра «Слабое звено»
-
1 раунд
-
Продолжи высказывание: Три точки, не лежащие на одной прямой… Через прямую и не лежащую на ней точку… Стереометрия – это раздел геометрии…
-
4. Если две точки прямой лежат в плоскости… 5. Если две плоскости имеют общую точку … 6. Раздел геометрии, изучающий свойства фигур на плоскости называется… 7. Через две пересекающиеся прямые проходит…
-
8. Квадрат гипотенузы равен… 9. Через прямую и не лежащую на ней точку… 10. Правильным называется треугольник, у которого… 11. Две прямые в пространстве называются параллельными… 12. Через любую точку пространства, не лежащую на данной прямой, проходит…
-
13. Если одна из двух параллельных прямых пересекает данную плоскость… 14. Синус 30 градусов равен … 15. Если две прямые параллельны третьей прямой, то… 16. Косинус 30 градусов равен… 17. Тангенс 45 градусов равен…
-
18. Прямая и плоскость называются параллельными , если… 19 В прямоугольном треугольнике синус острого угла равен… 20. Если плоскость проходит через прямую, параллельную другой плоскости и пересекает эту плоскость, то… 21. В прямоугольном треугольнике тангенс острого угла равен….
-
2 раунд
-
Верно ли высказывание:
Прямые параллельны, если они не имеют общих точек. Прямая, пересекающая две параллельные прямые, лежит в одной плоскости с этими прямыми. 3. Синус угла в 60 градусов равен 0,5.
-
4. Прямая, проходящая через две пересекающиеся прямые, лежит в одной плоскости с этими прямыми. 5. Если прямая параллельна какой-нибудь прямой, лежащей в плоскости, то она параллельна этой плоскости. 6. Если сумма двух сторон треугольнике равна третьей стороне, то треугольник прямоугольный. 7. Если сумма двух углов треугольника равна 90о, то треугольник прямоугольный.
-
8. Если сторона треугольника лежит против угла в 30о, то она в 2 раза меньше другой стороны треугольника. 9. Все пересекающиеся прямые лежат в одной плоскости. 10. Если две прямые не имеют общих точек, то они являются скрещивающимися. 11. Все прямые, пересекающие стороны одного угла лежат в одной плоскости. 12. Две прямые, параллельные одной плоскости, параллельны.
-
13. Если через две прямые можно провести плоскость, то эти прямые параллельны. 14. Если прямые параллельны, то через них можно провести плоскость. 15. Если прямая параллельна плоскости, то она параллельна любой прямой, лежащей в этой плоскости.
-
16. Одна из прямых лежит в плоскости, другая прямая пересекает эту плоскость следовательно эти прямые скрещивающиеся. 18. Тангенс острого угла в прямоугольном треугольнике равен 1, значит этот треугольник равнобедренный. 19. Косинус 45 градусов равен 0,5.
-
20. Плоскость, проходящая через прямую, параллельную другой плоскости и пересекающая эту плоскость, пересекает ее по прямой, параллельной данной. 21. Одна из параллельных прямых параллельна плоскости, значит вторая тоже параллельна этой плоскости. 22. Одна из параллельных прямых пересекает плоскость, значит вторая прямая тоже пересекает эту плоскость.
-
3 раунд
-
Дайте ответ на вопрос: 1. Точка М не лежит на прямой р, сколько плоскостей можно провести через точку М и прямую р? 2. Прямые а и в скрещиваются с прямой с. Могут ли прямые а и в быть параллельными. 3. Одна из лежит в плоскости, другая пересекает эту плоскость. Как могут быть расположены эти прямые? 4. Плоямых лежит в плоскости прщадь прямоугольного треугольника равна… 5. Площадь параллелограмма равна…
-
3. Одна из прямых лежит в плоскости, другая пересекает эту плоскость. Как могут быть расположены эти прямые? 4. Прямые а и в скрещиваются с прямой с. Могут ли прямые а и в пересекаться? 5. Как могут быть расположены прямая и плоскость, если данная прямая и некоторая прямая, лежащая в этой плоскости, скрещивающиеся?
-
6. Средняя линия трапеции лежит в плоскости α . Пересекают ли основания трапеции эту плоскость? 7. Могут ли две различные плоскости иметь только две общие точки? 8. Что можно сказать о взаимном положении двух плоскостей, которые имеют три общие точки, не лежащие на одной прямой. 9. Прямая пересекает плоскость. Можно ли в данной плоскости провести прямую, параллельную данной прямой. 10. В прямоугольном треугольнике АВС угол С – прямой, синус угла А равен 0,6. Найдите косинус этого угла. 11. В прямоугольном треугольнике АВС угол С прямой, синус угла А равен 0,6. Найдите тангенс этого угла.
-
12 . Треугольники АВС и АВД не лежат в одной плоскости. Как расположены прямые АВ и СД? 13. Треугольники АВС и АВД не лежат в одной плоскости. Как расположены прямые АС и ВД? 14. Найдите угол между прямыми АС и В”Д” куба АВСДА””єĔ. 15. Прямые а и в пересекаются в точке М. Прямая с, не проходящая через точку М, пересекает прямые а и в. Лежат ли все эти прямые в одной плоскости?
-
11. Периметр правильного треугольника равен… 12. Периметр параллелограмма можно вычислить по формуле… 13. Площадь квадрата равна… 14. Чтобы найти высоту параллелограмма надо его площадь… 15. Квадрат гипотенузы равен…
-
16. Если известна площадь квадрата, то его сторону можно найти, если… 17. Зная периметр прямоугольника и одну из его сторон, вторую сторону найдем так… 18. Чтобы найти сторону правильного треугольника, надо его периметр…
-
19. Площадь треугольника, у которого известны три стороны, вычисляется по формуле… 20. Если известны диагонали ромба, то его площадь можно вычислить по формуле… 21. Катет, лежащий против угла в 30о равен…
-
4 раунд
-
Постройте сечение многогранника плоскостью.
-
ФИНАЛ
-
1. Может ли какое-то свойство ромба не выполняться для квадрата? 2. Может ли какое-то свойство квадрата не выполняться для ромба?
-
3. Нарисуйте четырехугольник, у которого диагонали перпендикулярны, но он - не ромб. 4. Нарисуйте четырехугольник, у которого диагонали равны, а он не прямоугольник.
-
5. В четырехугольнике АВСД АД и ВС параллельны. Какое условие надо добавить, чтобы четырехугольник был параллелограммом? 6. В четырехугольнике АВСД АД и ВС параллельны. Какое условие надо добавить, чтобы четырехугольник был трапецией.
-
7. Может ли трапеция быть равнобедренной и прямоугольной одновременно? 8. Может ли трапеция иметь два равных противоположных угла?
-
9. Назовите три стороны треугольника, являющегося египетским. 10. Назовите три стороны треугольника, называемого пифагоровым. 11. Определите вид треугольника А) со сторонами 4,5; 6; 7,5. Б)со сторонами 5; 12 ; 13.
-
Поздравляем победителей: 1 место – 2 место –
-
С новым годом!
Нет комментариев для данной презентации
Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.