Содержание
-
Применение производной для исследования функции на монотонность и экстремумы
-
Х У 0 касательная α k– угловой коэффициент прямой (касательной) Геометрический смысл производной: если к графику функции y = f(x) в точке с абсциссой можно провести касательную, непараллельную оси у, то выражает угловой коэффициент касательной, т.е. Поскольку , то верно равенство
-
х у Если α 0. Если α> 90°, то k
-
Теорема 1. Если во всех точках открытого промежутка Х выполняется неравенство f!(х)≥0 (причем равенство f!(х)=0 выполняется лишь в изолированных точках), то функция у= f(х) возрастает на промежутке Х. Теорема 2. Если во всех точках открытого промежутка Х выполняется неравенство f!(х)≤0 (причем равенство f!(х)=0 выполняется лишь в изолированных точках), то функция у= f(х) убывает на промежутке Х. Теорема 3. Если во всех точках открытого промежутка Х выполняется равенство f!(х)=0,то функция у= f(х) постоянна на промежутке Х.
-
Пример: Исследовать на монотонность функцию у=2х3+3х2 – 1.
Исследовать функцию на монотонность – это значит выяснить, на каких промежутках области определения функция возрастает, а на каких – убывает. Согласно теоремам 1 и 2, это связано со знаком производной. Найдем производную данной функции:
-
f!(х)=6х2+6х=6х (х+1) Если функция непрерывна не только на открытом промежутке, но и в его концевых точках (именно так обстоит дело для заданной функции), эти концевые точки включают в промежуток монотонности функции. -1 0 + х + f!(х) f(х) Ответ:функция возрастает хЄ(-∞; - 1], [0;+∞), функция убывает хЄ[-1 ; 0]
-
Точки экстремума функции и их нахождение
Рассмотрим график функции у=2х3+3х2–1 х у - 1 0 На графике две уникальные точки: (-1;0) и (0;-1). В этих точках: 1) происходит изменение характера монотонности функции; 2) касательная к графику функции параллельна оси Х (или совпадает с осью Х), т.е. производная функции в каждой из указанных точек равна нулю; 3) f(-1) – наибольшее значение функции, но не во всей области определения, а по сравнению со значениями функции из некоторой окрестности точки х = - 1. Также f(0) – наименьшее значение функции в окрестности точки х=0
-
Определение 1.Точку х=х0 называют точкой минимума функции у = f(х), если у этой точки существует окрестность, для всех точек которой (кроме самой точки х=х0) выполняется неравенство f(х)>f(х0). Определение 2.Точку х=х0 называют точкой максимума функции у = f(х), если у этой точки существует окрестность, для всех точек которой (кроме самой точки х=х0) выполняется неравенство f(х)
-
Значение максимума и минимума обозначаются:уmax , yminсоответственно.
ВНИМАНИЕ!!! Только не путать с наибольшим (или наименьшим) значением функции во всей рассматриваемой области определения, эти значения в окрестности некоторой точки Х, являются наибольшими (или наименьшими). Точки минимума и максимума функции называют – точки экстремума (от латинского слова extremum – «крайний»)
-
Теорема 4. Если функция у = f(х) имеет экстремум в точке х=х0, то этой точке производная либо равна нулю, либо не существует. Внутренние точки области определения функции, в которых производная функции равна нулю, называют стационарными, а внутренние точки области определения функции, в которых функция непрерывна, но производная не существует – критическими.
-
Теорема 5 (достаточные условия экстремума).Пусть функция у = f(х) непрерывна на промежутке Х и имеет внутри промежутка стационарную или критическую точку х=х0.Тогда: 1) Если у этой точки существует такая окрестность, в которой при хх0 – неравенство f1(x)>0, то х=х0 – точка минимума функции у=f(x); 2) Если у этой точки существует такая окрестность, в которой при х0, а при х>х0 – неравенство f1(x)
-
Для запоминания!!! min max Экстремума нет Экстремума нет
-
Пример:Найти точки экстремума функции у=3х4 – 16х3 + 24х2 – 11.
Решение:найдем производную данной функции: у1=12х3 – 48х2 + 48х. Найдем стационарные точки: 12х3 – 48х2 + 48х=0 12х(х2 – 4х + 4)=0 Производная обращается в нуль в точках х=0 и х=2 12х(х – 2)2=0 - + + 0 2 х Значит, х=0 – точка минимума. Ответ: уmin= - 11.
-
Алгоритм исследования непрерывной функции у=f(х) на монотонность и экстремумы: Найти производную f1(х). Найти стационарные (f1(х)=0) и критические (f1(х) не существует) точки функции у=f(х). Отметить стационарные и критические точки на числовой прямой и определить знаки производной на получившихся промежутках. На основании теорем 1, 2, и 5 сделать выводы о монотонности функции и о ее точках экстремума.
-
Пример: Исследовать функцию на монотонность и экстремумы
-
16 На рисунке изображен график функции y=f(x), определенной на интервале ( - 8; 3). Определить количество целых точек, в которых производная функции отрицательна
-
17 Ответ: 4
-
18 На рисунке изображен график производной функции y=f(x), определенной на интервале ( - 7; 5). Найти точку экстремума функции на отрезке [-6; 4]
-
19 Ответ: - 3
-
20 На рисунке изображен график производной функции y=f(x), определенной на интервале ( - 3; 8). Найти количество точек максимума функции на отрезке [- 2; 7]
-
21 Ответ: 2
-
22 На рисунке изображен график производной функции y=f(x), определенной на интервале ( - 3; 8). Найти промежутки убывания функции. В ответе указать сумму целых точек, входящих в эти промежутки
-
23 Ответ: 16
-
24 На рисунке изображен график производной функции y=f(x), определенной на интервале ( - 11; 3). Найти промежутки возрастания функции. В ответе указать длину наибольшего из них
-
25 Ответ: 6
-
Работа с учебником: №30.12, 30.13, 30.26
Домашнее задание: №30.03, 30.12, 30.13, 30.26
-
Спасибо за урок!!!
-
Источники изображений
http://i.allday.ru/uploads/posts/2009-08/thumbs/1250058141_12.jpg http://www.ccboe.net/Teachers/Durham_Sharon/images/918F9422010B4BB0B160956D6B9D4E34.JPG http://www.utkonos.ru/images/it/027/008/006/1238197P.jpg http://www.caringbahlearningcentre.com.au/assets/images/calc.JPG
Нет комментариев для данной презентации
Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.