Презентация на тему "Производная функции. Геометрический смысл производной"

Презентация: Производная функции. Геометрический смысл производной
1 из 17
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
0.0
0 оценок

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Смотреть презентацию онлайн на тему "Производная функции. Геометрический смысл производной" по математике. Презентация состоит из 17 слайдов. Материал добавлен в 2017 году.. Возможность скчачать презентацию powerpoint бесплатно и без регистрации. Размер файла 0.16 Мб.

  • Формат
    pptx (powerpoint)
  • Количество слайдов
    17
  • Слова
    математика
  • Конспект
    Отсутствует

Содержание

  • Презентация: Производная функции. Геометрический смысл производной
    Слайд 1

    Производная функции. Геометрический смысл производной.

  • Слайд 2

    Производная функции — одна из сложных тем в школьной программе. Не каждый выпускник ответит на вопрос, что такое производная.

  • Слайд 3

    Производная — это скорость изменения функции.

  • Слайд 4

    На рисунке — графики трех функций. Как вы думаете, какая из них быстрее растет?

  • Слайд 5

    Костя, Гриша и Матвей одновременно устроились на работу. Посмотрим, как менялся их доход в течение года: Доход Кости за полгода вырос больше чем в два раза. И у Гриши доход тоже вырос, но совсем чуть-чуть. А доход Матвея уменьшился до нуля. Стартовые условия одинаковые, а скорость изменения функции, то есть производная, — разная. Что касается Матвея — у его дохода производная вообще отрицательна.

  • Слайд 6

    Интуитивно мы без труда оцениваем скорость изменения функции. Но как же это делаем?  На самом деле мы смотрим, насколько круто идет вверх (или вниз) график функции. Другими словами — насколько быстро меняется у с изменением х. Очевидно, что одна и та же функция в разных точках может иметь разное значение производной — то есть может меняться быстрее или медленнее.

  • Слайд 7

    Нарисован график некоторой функции  . Возьмем на нем точку    с абсциссой  . Проведём в этой точке касательную к графику функции.  Мы хотим оценить, насколько круто вверх идет график функции. Удобная величина для этого — тангенс угла наклона касательной.

  • Слайд 8

    В качестве угла наклона мы берем угол между касательной иположительным направлением оси OX

  • Слайд 9

    Проходящую через точку (x0;f (x0;)) прямую, с отрезком которой практически сливается график функции f при значениях х, близких к х0, называют касательной к графику функции f в точке (х0; f (х0)).

  • Слайд 10

    Найдем k=tgα С помощью графика мы нашли производную, не зная формулы функции. (В 8)

  • Слайд 11

    Производная функции в точке     равна угловому коэффициенту касательной, проведенной к графику функции в этой точке.  Производная функции равна тангенсу угла наклона касательной.

  • Слайд 12

    У одной и той же функции в разных точках может быть разная производная. Посмотрим, как же связана производная с поведением функции. На одних участках эта функция возрастает, на других — убывает, причем с разной скоростью. Кроме того у этой функции есть точки максимума и минимума.

  • Слайд 13

    В точке А функция возрастает. Касательная образует острый угол с положительным направлением оси ОХ. Значит производная положительна. В точке В функция убывает. Касательная образует тупой угол с положительным направлением оси ОХ. Значит производная отрицательна. Если функция возрастает – ее производная положительна, если убывает, то отрицательна.

  • Слайд 14

    В точках  максимумаи  минимумакасательная горизонтальна. Следовательно, тангенс угла наклона касательной в этих точках равен нулю, и производная тоже равна нулю. Точка  C— точка максимума. В этой точке возрастание функции сменяется убыванием. Следовательно, знак производной меняется в точке   с «плюса» на «минус». В точке  D — точке минимума — производная тоже равна нулю, но ее знак меняется с «минуса» на «плюс».

  • Слайд 15
  • Слайд 16

    Возможен случай, когда производная в какой-то точке равна нулю, но в этой точке она не меняет знак. В точке Е нет ни максимума, ниминимума. Это точка перегиба.

  • Слайд 17

    В точке Е – точке максимума производная не существует. На графике это соответствует резкому излому, когда касательную в данной точке провести невозможно.

Посмотреть все слайды

Сообщить об ошибке