Презентация на тему "Процентные вычисления в жизненных ситуациях"

Презентация: Процентные вычисления в жизненных ситуациях
Включить эффекты
1 из 23
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
1.0
1 оценка

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Посмотреть и скачать презентацию по теме "Процентные вычисления в жизненных ситуациях" по математике, включающую в себя 23 слайда. Скачать файл презентации 1.64 Мб. Средняя оценка: 1.0 балла из 5. Большой выбор учебных powerpoint презентаций по математике

  • Формат
    pptx (powerpoint)
  • Количество слайдов
    23
  • Слова
    алгебра
  • Конспект
    Отсутствует

Содержание

  • Презентация: Процентные вычисления в жизненных ситуациях
    Слайд 1

    Процентные вычисления в жизненных ситуациях

    Выполнила группа финансистов

  • Слайд 2

    Цель данной работы: Рассмотреть основные типы задач на проценты Показать широту применения задач «на проценты» Выявить сферы применения данных задач Рассмотреть формулу сложного процента, а также схему расчета сложного процента и их применение при решении задач на проценты

  • Слайд 3

    Задачи данной работы: Провести анализ математической и научно-методической литературы по проблеме исследования с целью выделения основных теоретических фактов по теме «Проценты». Выяснить историю происхождения процента, выделить основные типы задач по теме «Проценты». Выяснить сферы использования процентов, их роль в жизни человека. Рассмотреть основные типы задач «на проценты» с их последующим решением, выделить формулу для вычисления «сложного процента», а также схему решения задач на «сложные проценты».

  • Слайд 4

    История создания процентов. Само слово «процент» происходит от лат. «procentum», что означает в переводе «сотая доля». В 1685 году в Париже была издана книга «Руководство по коммерческой арифметике» Матье де ла Порта. В одном месте речь шла о процентах, которые тогда обозначали «cto» (сокращенно от cento). Однако наборщик принял это «cto» за дробь и напечатал «%». Так из-за опечатки этот знак вошёл в обиход. Были известны проценты и в Индии. Индийские математики вычислили проценты, применяя так называемое тройное правило, то есть пользуясь пропорцией. В Древнем Риме были широко распространены денежные расчеты с процентами. Римский сенат установил максимально доступный процент, взимавшийся с должника.

  • Слайд 5

    В Европе в средние века расширилась торговля и, следовательно, особое внимание обращалось на умение вычислять проценты. Тогда приходилось рассчитывать не только проценты, но и проценты с процентов (сложные проценты). Часто конторы и предприятия для облегчения расчетов разрабатывали особые таблицы вычисления процентов. Эти таблицы держались в тайне, составляли коммерческий секрет фирмы. Впервые таблицы были опубликованы в 1584 году СимономСтевином. Фламандский ученый, военный инженер Симон Стевин не был по профессии математиком, но его трудолюбие и талант позволили ему занять достойное место среди выдающихся европейских математиков. Он первым в Европе открыл десятичные дроби. СимонСтевин опубликовал таблицу для вычисления сложных процентов, которая использовалась в торгово-финансовых операциях. В практической жизни полезно знать связь между простейшими значениями процентов и соответствующими дробями: половина - 50% , четверть - 25% , три четверти - 75% , пятая часть - 20% , три пятых - 60% и т.д.

  • Слайд 6

    Основные теоретические факты: В любой задачи есть условие, т.е. исходные данные, заключение, т.е. требование, которое нужно выполнить и субъект, который это требование выполнит. Задача – это задание, которое должен выполнить субъект, или вопрос, на который он должен найти ответ, опираясь на указанное условие и все вытекающие из них следствия.

  • Слайд 7

    Основные методы решения текстовых задач: Арифметический - Суть арифметического метода состоит в том, что задачи решаются по действиям. Алгебраический -Суть алгебраического метода решения задач состоит в том, что одна из величин принимается, например за х, все зависимости существующие между величинами переводятся на язык равенств, уравнений и далее решается полученное уравнение. Здесь мы предполагаем, что искомая величина найдена и оперируем ей как известной величиной. После нахождения х полученные результаты переводятся с математического языка на естественный.

  • Слайд 8

    Основные типы задач на проценты: Нахождение процентов от данного. Нахождение числа по его процентам. Нахождение процентного отношения.

  • Слайд 9

    Нахождение процента от числа

    Чтобы найти процент от числа, надо это число умножить на соответствующую дробь. Например: 20% от 45кг пшеницы равны 45·0,2=9 кг.

  • Слайд 10

    Нахождение числа по его проценту

    Чтобы найти число по его проценту, надо часть, соответствующую этому проценту разделить на дробь. Например: Если 8% от длины бруска составляют 2,4см, то длина всего бруска равна 2,4:0,08=30см

  • Слайд 11

    Нахождение процентного отношения двух чисел

    Чтобы узнать, сколько процентов одно число составляет от второго, надо первое число разделить на второе и результат умножить на 100%. Например. 9г соли в растворе массой 180г составляют 9:180·100%= 5%.

  • Слайд 12

    Формула расчета простых процентов

    Sp = [P * I * t : K] : 100 I- годовая процентная ставка t- количество дней начисления процентов по привлеченному вкладу K - количество дней в календарном году(365 или 366) P - сумма привлеченных в депозит денежных средств Sp- сумма процентов (доходов)

  • Слайд 13

    Видоизмененная формула простых процентов

    S = P + [P * I * t : K] : 100 S - сумма банковского вклада (депозита) с процентами, I - годовая процентная ставка t - количество дней начисления процентов по привлеченному вкладу K - количество дней в календарном году(365 или 366) P - сумма привлеченных в депозит денежных средств Пример: Предположим что банком принят депозит в сумме 50тыс. рублей сроком на 3 месяца по ставке 10,5 процентов «годовых» Sp = 50 000 * 10,5 * 90 : 365 : 100 = 1294,52 S = 50 000 + 50 000 * 10,5 * 30 : 365 : 100 = 51 294,52

  • Слайд 14

    Формула расчета сложных процентов

    Sp = P * [(1 + I * t : K :100) n - 1] или Sp = S - P = P * (1 + I * t : K : 100) n – P I- годовая процентная ставка t- количество дней начисления процентов по привлеченному вкладу K - количество дней в календарном году (365 или 366) P - сумма привлеченных в депозит денежных средств Sp - сумма процентов (доходов). n- число периодов начисления процентов. S- сумма вклада (депозита) с процентами Однако, при расчете процентов проще сначала вычислить общую сумму вклада с процентами, и только затем вычислять сумму процентов (доходов). Формула расчета вклада с процентами будет выглядеть так: S = P * (1 + I * t : K : 100) n

  • Слайд 15

    Пример: Принят депозит в сумме 50тыс. Рублей сроком на 90 дней по ставке 10,5 процентов годовых с начислением процентов каждые 30 дней. S = 50 000 * (1 + 10,5 * 30 : 365 :100)3 = =51 305,72 Sp = 50 000 * [(1 + 10,5 * 30 : 365 : 100)3 -1] = =1 305,72

  • Слайд 16

    Исследовательская часть

    Сфера применения процентов : в финансовой и экономической (банки), социальной (распределение населения), политической (голосование), коммунальной (повышение и понижение стоимости электроэнергии и квартплаты), в товарных отраслях , в научной (химия, физика – величина КПД)

  • Слайд 17

    Проценты в банковской сфере:

    Задача 1. Вкладчик положил некоторую сумму на вклад «Новогодний» в Сбербанк России. Через три года вклад достиг 66550 рублей. Каков был первоначальный вклад при 11% годовых? Решение: Используем формулу сложного процента и находим а (1+0,1)3 = 66550 1,331а = 66550 а = 50000 (руб.) – первоначальный вклад Ответ: 50000 рублей первоначальный вклад при 11% годовых.

  • Слайд 18

    Проценты в торговле:

    Задача 2. Цена бананов в магазине «Копейка» первоначально составляла 21р.99коп. С декабря месяца цена сначала поднялась на 15%, потом понизилась на 6,5%, затем снова поднялась на 10%. Какова цена бананов? Решение: По формуле сложного процента находим: 21,99(1+0,15)(1,065)(1+0,1)=26(р) Ответ: 26 рублей цена бананов.

  • Слайд 19

    Проценты в политике:

    Задача 3. На выборах президента РФ в марте приняли участие 68% избирателей Прилузского района. 50% от числа принявших участие в выборах отдали голоса за избранного президента Медведева Д.А. Сколько жителей проголосовало за него, если в городе проживает 75 тыс. взрослого населения? Решение: Определим число избирателей, принявших участие в выборах: 75000 · 68100 / 100 = 51000 (чел.) Определим число избирателей, отдавших голос за Медведева Д.А.: 51000 · 50100 / 100 = 25500 (чел.) Ответ: 25500 человек проголосовало за Медведева.

  • Слайд 20

    Проценты в химии:

    Решение: В 20 т металла содержится 100 – 6 = 94%, или 20 ∙ 0,94= 18,8 (т) чистого металла, который составляет от массы руды 18,8 ∙100 / 40 = 47 %. Ответ: в руде 47 % примесей. Задача 4. Из 40 т руды выплавили 20 т металла, содержащего 6% примесей. Сколько процентов примесей в руде?

  • Слайд 21

    Заключение:

    Умение выполнять процентные вычисления и расчеты необходимо каждому человеку, так как с процентами мы сталкиваемся в повседневной жизни постоянно. Поэтому выбранная нами тема актуальна. В работе мы обобщили предыдущий опыт, связанный с темой «Проценты», а также рассмотрели более сложные задачи по данной теме. Также мы узнали, что при решении задач на проценты можно использовать формулу сложного процента, а также схемы.

  • Слайд 22

    Решенные нами задачи показали, что применение формулы «сложных процентов» весьма эффективна, поэтому нам бы хотелось, чтобы и остальные учащиеся нашего класса познакомились с ней и увидели ее эффективность, при решении более сложных задач по теме «Проценты».

  • Слайд 23

    Список используемой литературы:

    Алимов Ш.А., Алгебра: учеб. для 7 кл. общеобразоват. учреждений / Ш.А. Алимов, Ю.М. Колягин, Ю.В. Сидоров и др. - 10-е изд. – М.: Просвещение, 2002. – 207 с.: ил. Григорьева Т.П., Кузнецова Л.И., Перевощикова Е.Н., Пыжьянова А.Н. Пособие по элементарной математике: методы решения задач. Часть 2. 4 – е изд. – Н.Новгород: НГПУ, 2004. - 101 с. Иванова Т.А., Теоретические основы обучения математике в средней школе: Учебное пособие / Т.А. Иванова, Е.Н. Перевощикова, Т.П. Григорьева, Л.И. Кузнецова; Под ред. проф. Т.А. Ивановой. – Н.Новгород: НГПУ, 2003. – 320 с. Теляковский С.А., Алгебра 7 кл.: Учеб. для общеобразоват. учреждений. – 9-е изд. – М.: Просвещение, 2002. – 375 с.: ил. Шевкин А. В. , Материалы курса «Текстовые задачи в школьном курсе математики»: Лекции 1 – 8. – М.: Педагогический университет «Первое сентября», 2006. 80 с.

Посмотреть все слайды

Сообщить об ошибке