Презентация на тему "Задачи на проценты с решением"

Презентация: Задачи на проценты с решением
1 из 25
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
3.0
1 оценка

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Интересует тема "Задачи на проценты с решением"? Лучшая powerpoint презентация на эту тему представлена здесь! Данная презентация состоит из 25 слайдов. Средняя оценка: 3.0 балла из 5. Также представлены другие презентации по математике. Скачивайте бесплатно.

  • Формат
    pptx (powerpoint)
  • Количество слайдов
    25
  • Слова
    алгебра
  • Конспект
    Отсутствует

Содержание

  • Презентация: Задачи на проценты с решением
    Слайд 1

    Исследовательская работа по теме «ПРОЦЕНТЫ»

    pptcloud.ru

  • Слайд 2

    ПЛАН

    Введение 1. Из истории происхождения процентов 2. Решение задач на проценты разными способами 3. Решение задач по формуле сложных процентов 4. Решение задач на смеси и сплавы. 5. Применение процентов в жизни Заключение Список литературы

  • Слайд 3

    Почему я выбрал тему «Проценты»?

    Проценты - это одна из сложнейших тем математики, и очень многие учащиеся затрудняются или вообще не умеют решать задачи на проценты. А понимание процентов и умение производить процентные расчёты необходимы для каждого человека. Прикладное значение этой темы очень велико и затрагивает финансовую, экономическую, демографическую и другие сферы нашей жизни. Изучение процента продиктовано самой жизнью. Умение выполнять процентные вычисления и расчеты необходимо каждому человеку, так как с процентами мы сталкиваемся в повседневной жизни. Немецкий физик 18-го столетия Лихтенберг сказал: « То, что вы были принуждены открыть сами, оставляет в вашем уме дорожку, которой вы сможете снова воспользоваться, когда в том возникнет необходимость». Поэтому я решил и сделал подборку задач из ГИА - 9 классов, из ЕГЭ - 11 классов на банковские проценты, где применяется формула сложных процентов.

  • Слайд 4

    Цель исследовательской работы

    · Расширение знаний о применении процентных вычислений в задачах и из разных сфер жизни человека.

  • Слайд 5

    Задачи:

    · Познакомиться с историей возникновения процентов; · Решать задачи на проценты разными способами; · Сделать подборку задач из ГИА - 9 кл., ЕГЭ -11кл., решаемые по формуле сложных процентов; · Поработать в текстовом редакторе; · Поработать с ресурсами Internet; · Получить опыт публичного выступления.

  • Слайд 6

    История создания процентов.

    В Европе в средние века расширилась торговля и, следовательно, особое внимание обращалось на умение вычислять проценты. Тогда приходилось рассчитывать не только проценты, но и проценты с процентов (сложные проценты). Часто конторы и предприятия для облегчения расчетов разрабатывали особые таблицы вычисления процентов. Эти таблицы держались в тайне, составляли коммерческий секрет фирмы. Впервые таблицы были опубликованы в 1584 году Симоном Стевином

  • Слайд 7

    Решение задач на проценты разными способами

    Задачи с процентами можно решить разными способами: уравнением; составлением таблицы; применяя пропорцию; по действиям; используя правила.

  • Слайд 8

    Решение задач на сложные проценты

    Сложным процентом называется сумма дохода, которая образуется в результате инвестирования денег при условии, что сумма начисленного простого процента не выплачивается в конце каждого периода, а присоединяется к сумме основного вклада и в следующем платежном периоде сама приносит доход . Сложные проценты - это проценты, полученные на начисленные проценты

  • Слайд 9

    Формула сложного процента

    х(1+ 0,01а) где х - начальный вклад, сумма. а -процент(ы) годовых n- время размещения вклада в банке х(1-0,01а) периодическое увеличение некоторой величины на одно и то же число процентов периодическое уменьшение некоторой величины на одно и то же число процентов.

  • Слайд 10

    Решение задач

    Задача 1: Вкладчик открыл счет в банке, внеся 2000 рублей на вклад, годовой доход по которому составляет 12%, и решил в течение шести лет не брать процентные начисления. Какая сумма будет лежать на счете через шесть лет?

  • Слайд 11

    Решим эту задачу по формуле сложных процентов. первоначальный вклад - 2000 процент годовых - 12 n - 6 лет, значит 2000(1 + 0,12) = 2000*1,126 = 2000*1,973823 = 3947,65 ОТВЕТ: через 6 лет на счете будет лежать сумма в виде 3947 руб. и 65 коп..

  • Слайд 12

    Задача 2:

    После двух последовательных снижений цен на одно и то же число процентов стоимость товара с 400 рублей снизилась до 324 рублей. На сколько процентов стоимость товара снижалась каждый раз?

  • Слайд 13

    Решение: 400*(1-0,01а)=324 20(1 - 0,01а) = 18 1 - 0,01а = 0,9 а = 10 ОТВЕТ: стоимость товара каждый раз снижалась на 10%

  • Слайд 14

    Задача №3

    В соответствии с договором фирма с целью компенсации потерь от инфляции была обязана в начале каждого квартала (3 месяца) повышать сотруднику зарплату на 2%. Однако в связи с финансовыми затруднениями она смогла повышать ему зарплату только раз в полгода (в начале следующего полугодия). На сколько % фирма должна повышать зарплату каждые полгода, чтобы первого января следующего года зарплата сотрудника была равна той, которую он получил бы в режиме повышения, предусмотренной договором?

  • Слайд 15

    Решение: Для решения составим таблицу

  • Слайд 16

    По таблице составим уравнение: х(1+0,02) = х(1+0,01а)² (1+0,02)² = (1+0,01а) 1+0,04+0,0004=1+0,01а 0,0404=0,01а а = 4,04% ОТВЕТ: через каждый полгода зарплату сотрудникам надо поднимать на 4,04%

  • Слайд 17

    Решение задач на смеси и сплавы.

    Задача 1. При смешивании 5%-ного раствора кислоты с 40% -ным раствором кислоты получили 140г 30%-ного раствора. Сколько граммов каждого раствора было для этого взято?

  • Слайд 18

    Рассмотрим старинный способ решения этой задачи. Друг под другом пишутся содержания кислот имеющихся растворов, слева от них и примерно посередине – содержание кислоты в растворе, который должен получиться после смешивания. Соединив написанные числа чёрточками получим такую схеме: 30 5 40 Рассмотрим пары 30 и 5, 30 и 40. В каждой паре из большего числа вычтем меньшее и результат запишем в конце соответствующей чёрточки . Получится такая схема: 10 30 5 40 25 Из неё делается заключение, что 5%-ного раствора следует взять 10 частей, а 40% - ого 25 частей, т.е. для получения 140г. 30% - ого раствора нужно взять 5% - ого раствора 40г., а 40% - ого - 100г .(10+25=35частей всего, 140:35=4г-вес одной части, 4×10=40г, 4×25=100г.)

  • Слайд 19

    Задача 2. Имеется серебро 12-й, 11-й и 5-й пробы. Сколько какого серебра надо взять, для получения 1 кг. серебра 9-й пробы? Применим метод, рассмотренный в задаче 1 дважды: первый раз, взяв серебро с наименьшей и наибольшей пробой, а во второй раз – с наименьшей и средней пробой. Получим следующую схему: 3 + 2 = 5 4 4 13 5 9 5 9 12 4 3 4 2 11 4

  • Слайд 20

    При этом найдены доли , в которых нужно сплавлять серебро наибольшей и средней пробы (4 и 4). Сложив затем доли серебра наименьшей пробы , найденные в первой и во второй раз (3+2=5), получим долю серебра наименьшей пробы в общем сплаве. Таким образом, надо взять кг. серебра 5-й пробы, кг. серебра 12-й пробы, Данная задача имеет не единственное решение. 9-й пробы серебро можно получить , сплавляя серебро 5-й и 12-й пробы в отношении 3:4(1сплав) или серебро 5-й и 11-й пробы в отношении 2:4(2 сплав). Соединяя 1 и 2 сплавы в любой пропорции, мы будем получать различные сплавы серебра 9-й пробы. кг. серебра 11-й пробы.

  • Слайд 21

    Задача 3.

    Имеется 240г. 70% -ого раствора уксусной кислоты. Нужно получить 6% - ный раствор кислоты. Сколько граммов воды (0%-ный раствор) нужно прибавить к имеющемуся раствору?

  • Слайд 22

    Решение.

    0 64 6 70 0 Итак, 240:6=40г.- составляет одна часть, а а воды следует взять 64 части, т.е, × 40=2560г 64

  • Слайд 23

    Применение процентов в жизни.

    В настоящее время понимание процентов и умение производить процентные расчеты, необходимы каждому человеку: Прикладное значение этой темы очень велико и затрагивает финансовую, экономическую, демографическую и другие сферы нашей жизни. Изучение процента продиктовано самой жизнью. Умение выполнять процентные вычисления и расчеты необходимо каждому человеку, так как с процентами мы сталкиваемся в повседневной жизни.

  • Слайд 24

    Заключение.

    Я выбрал эту тему потому, что мне нравится математика и я считаю, что математику надо знать хорошо.Я хотел получить полноценные представления о процентах, об их роли в повседневной жизни. Работа над данной темой , способствовала расширению моего математического кругозора, развитию умения анализировать, сравнивать, глубоко и прочно усвоив материал. Мне хочется порекомендовать ученикам формулу сложных процентов и применять её при решении задач на проценты.

  • Слайд 25

    Литература

    Крамор В.С. «Повторяем и систематизируем школьный курс алгебры и начало анализа». М., «Просвещение» 1990 год. Журнал «Математика в школе.» 1998г.№5. Ф.Ф. Нагибин «Математическая шкатулка» М.«Просвещение»1988год.

Посмотреть все слайды

Сообщить об ошибке