Презентация на тему "Сумма бесконечной геометрической прогрессии"

Презентация: Сумма бесконечной геометрической прогрессии
Включить эффекты
1 из 6
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
5.0
1 оценка

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Презентация на тему "Сумма бесконечной геометрической прогрессии" по математике. Состоит из 6 слайдов. Размер файла 0.13 Мб. Каталог презентаций в формате powerpoint. Можно бесплатно скачать материал к себе на компьютер или смотреть его онлайн с анимацией.

  • Формат
    pptx (powerpoint)
  • Количество слайдов
    6
  • Слова
    алгебра
  • Конспект
    Отсутствует

Содержание

  • Презентация: Сумма бесконечной геометрической прогрессии
    Слайд 1

    Сумма бесконечной геометрической прогрессии

    pptcloud.ru

  • Слайд 2

    Рассмотрим бесконечную геометрическую прогрессию: Будем последовательно вычислять суммы двух, трех и т. д. членов прогрессии. Получим: ; ; ; … . Получили последовательность

  • Слайд 3

    Если последовательность сходится к пределу , то число называют суммой геометрической прогрессии. ! Обратите внимание: называют не суммой членов геометрической прогрессии, а суммой геометрической прогрессии. Если же эта последовательность расходится, то о сумме геометрической прогрессии не говорят, хотя о сумме членов - можно, естественно, и в том случае.

  • Слайд 4

    Если знаменатель геометрической прогрессии удовлетворяет неравенству , то сумма прогрессии вычисляется по формуле . Доказательство. Как известно ,сумма первых членов геометрической прогрессии может быть высчитана по формуле: . Как ранее мы установили: . А так как мы назвали суммой геометрической прогрессии, то формула доказана .

  • Слайд 5

    Пример.

    Найти сумму геометрической прогрессии: 27, 9, 3, 1, … Решение. Имеем: ; . Так как знаменатель прогрессии , то можно воспользоваться формулой, доказанной нами только что: . Значит,

  • Слайд 6

    Практические задания

    1. Найдите сумму геометрической прогрессии: 2. Вычислите: 3. Найдите знаменатель геометрической прогрессии , если: 4. Найдите член геометрической прогрессии , если:

Посмотреть все слайды

Сообщить об ошибке