Презентация на тему "Теорема о трех перпендикулярах" 10 класс

Презентация: Теорема о трех перпендикулярах
Включить эффекты
1 из 20
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
5.0
1 оценка

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Посмотреть и скачать презентацию по теме "Теорема о трех перпендикулярах" по математике, включающую в себя 20 слайдов. Скачать файл презентации 0.3 Мб. Средняя оценка: 5.0 балла из 5. Для учеников 10 класса. Большой выбор учебных powerpoint презентаций по математике

  • Формат
    pptx (powerpoint)
  • Количество слайдов
    20
  • Аудитория
    10 класс
  • Слова
    геометрия
  • Конспект
    Отсутствует

Содержание

  • Презентация: Теорема о трех перпендикулярах
    Слайд 1

    Теорема о трех перпендикулярах Геометрия 10

  • Слайд 2

    Определение. a a S A F N D H Прямая называется перпендикулярной к плоскости, если она перпендикулярна к любой прямой, лежащей в этой плоскости. Повторение

  • Слайд 3

    q p a ap, p , aq, q, Признак перпендикулярности прямой и плоскости. a Повторение Если прямая перпендикулярна к двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна к этой плоскости.

  • Слайд 4

    Планиметрия Стереометрия Отрезок АН – перпендикуляр Точка Н – основание перпендикуляра Отрезок АМ – наклонная Точка М – основание наклонной Н А а А Н М М Отрезок МН – проекция наклонной на прямую а Отрезок МН – проекция наклонной на плоскость

  • Слайд 5

    Планиметрия Стереометрия Расстояние от точки до прямой – длина перпендикуляра Н А а А Н М М Расстояние от точки до плоскости – длина перпендикуляра Из всех расстояний от точки А до различных точек прямой а наименьшим является длина перпендикуляра. плоскости

  • Слайд 6

    Расстояние от лампочки до земли измеряется по перпендикуляру, проведенному от лампочки к плоскости земли Н а к л о н н а я Н а к л о н н а я П Е Р П Е Н Д И К У Л Я Р Проекция Проекция

  • Слайд 7

    Если две плоскости параллельны, то все точки одной плоскости равноудалены от другой плоскости. Расстояние от произвольной точки одной из параллельных плоскостей до другой плоскости называется расстоянием между параллельными плоскостями. II

  • Слайд 8

    Если прямая параллельна плоскости, то все точки прямой равноудалены от этой плоскости. a II a Расстояние от произвольной точки прямой до плоскости называется расстоянием между прямой и параллельной ей плоскостью.

  • Слайд 9

    a II Если две прямые скрещиваются, то через каждую из них проходит плоскость, параллельная другой прямой, и притом только одна. a Расстояние между одной из скрещивающихся прямых и плоскостью, проходящей через другую прямую параллельно первой, называется расстоянием между скрещивающимися прямыми. b ab

  • Слайд 10

    Расстояние между одной из скрещивающихся прямых и плоскостью, проходящей через другую прямую параллельно первой, называется расстоянием между скрещивающимися прямыми. А В

  • Слайд 11

    В С П-Р M П-Я Н-Я А Н-Я П-Я

  • Слайд 12

    A К Из точки А к плоскости проведены две наклонные, которые образуют со своими проекциями на плоскость углы в 600. Угол между наклонными 900. Найдите расстояние между основаниями наклонных, если расстояние от точки А до плоскости равно см. 600 600 С В

  • Слайд 13

    A В Из точки А к плоскости проведены две наклонные, длины которых равны 26 см и см. Их проекции на эту плоскость относятся как 5:4. Найдите расстояние от точки А до плоскости . С М ?

  • Слайд 14

    А Н П-Р М Теорема о трех перпендикулярах. Прямая, проведенная в плоскости через основание наклонной перпендикулярно к ее проекции на эту плоскость, перпендикулярна и к самой наклонной. Н-я П-я a

  • Слайд 15

    А Н П-Р М Обратная теорема. Прямая, проведенная в плоскости через основание наклонной перпендикулярно к ней, перпендикулярна и к ее проекции. Н-я П-я a

  • Слайд 16

    Прямая АК перпендикулярна к плоскости правильного треугольника АВС, а точка М – середина стороны ВС. Докажите, что МК ВС. В С А М №148. К П-я П-Р Н-я TTП BC AМ П-я BC MК Н-я

  • Слайд 17

    Отрезок АD перпендикулярен к плоскости равнобедренного треугольника АВС. Известно, что АВ = АС = 5 см, ВС = 6 см, АD = 12 см. Найдите расстояния от концов отрезка АD до прямой ВС. В С А N №149 (дом.) D П-я П-Р Н-я TTП BC AN П-я BC DN Н-я АN и DN – искомые расстояния 5 12 6

  • Слайд 18

    В треугольнике угол С прямой, угол А равен 600, AС=12см. DC (АВС). DC=Найдите расстояния: а) отточки С до прямой АВ, б) от точки D до прямой АВ. 600 С А N D П-я П-Р Н-я TTП АВСN П-я AB DN Н-я CN и DN – искомые расстояния 12 В

  • Слайд 19

    П-я Через вершину прямого угла С равнобедренного прямоугольного треугольника АВС проведена прямая СМ, перпендикулярная к его плоскости. Найдите расстояние от точки М до прямой АВ, если АС = 4 см, а СМ = А В С №155. М П-Р Н-я TTП AВСF П-я AВ MF Н-я МF – искомое расстояние F 4

  • Слайд 20

    П-я Один из катетов прямоугольного треугольника равен т, а острый угол, прилежащий к этому катету, равен . Через вершину прямого угла С проведена прямая СD, перпендикулярная к плоскости этого треугольника, СD = n. Найдите расстояние от точки D до прямой АВ. А В С №156. D П-Р Н-я TTП AВСF П-я AВ DF Н-я DF – искомое расстояние т n F

Посмотреть все слайды

Сообщить об ошибке