Презентация на тему "Тригонометрические неравенства"

Презентация: Тригонометрические неравенства
Включить эффекты
1 из 13
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
0.0
0 оценок

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Скачать презентацию (0.23 Мб). Тема: "Тригонометрические неравенства". Предмет: математика. 13 слайдов. Добавлена в 2017 году.

  • Формат
    pptx (powerpoint)
  • Количество слайдов
    13
  • Слова
    геометрия
  • Конспект
    Отсутствует

Содержание

  • Презентация: Тригонометрические неравенства
    Слайд 1

    Решение простейших тригонометрических неравенств

    pptcloud.ru

  • Слайд 2

    Решение неравенств, содержащих тригонометрические функции обычно сводится к решению простейших неравенств вида: sin(t);≥)a;cos(t);≥)a;tg(t);≥)a;ctg(t);≥)a;Способы решения этих неравенств совершенно очевидным образом вытекают из представления тригонометрических функций на единичном круге.

  • Слайд 3
  • Слайд 4

    Неравенства : sin x > a, sin x a, sin x

  • Слайд 5
  • Слайд 6

    Тригонометрическое неравенство sin(t)≥a.

    Все точки Pt единичной окружности при значениях t, удовлетворяющих данному неравенству, имеют ординату, большую или равную -1/2. Множество таких точек это дуга l, которая выделена жирным на рисунке ниже. Найдем условие принадлежности точки Pt этой дуге. Точка Pt лежит на правой полуокружности, ордината Pt равна 1/2, и, следовательно, в качестве t1 удобно взять значение t1=arcsin(-1/2)=-π/6. Представим себе, что мы совершаем обход дуги l от точки Pt1 к Pt2 против часовой стрелки. Тогда t2 > t1, и, как легко понять, t2=π-arcsin(-1/2)=7*π/6. Таким образом, получаем, что точка Pt принадлежит дуге l, если -π/6 ≤ t ≤ 7*π/6. Таким образом, решения неравенства, принадлежащие промежутку [-π/2 ; 3*π/2] длиной 2*π таковы: -π/6 ≤ t ≤ 7*π/6. Вследствие периодичности синуса остальные решения получаются добавлением к найденным чисел вида 2πn, где n - целое. Таким образом, мы приходим к ответу: -π/6+2πn≤t≤7π/6+2πn, n - целое.

  • Слайд 7

    Пример 1

    Решите неравенство Нарисуем тригонометрическую окружность и отметим на ней точки, для которых ордината превосходит Для x    [0; 2π]  решением данного неравенства будут Ясно также, что если некоторое число x будет отличаться от какого-нибудь числа из указанного интервала на 2π n  то sin  x также будет не меньше Следовательно, к концам найденного отрезка решения нужно просто добавить 2π n , где Окончательно, получаем, что решениями исходного неравенства будут все где Ответ.   где

  • Слайд 8
  • Слайд 9
  • Слайд 10

    Тригонометрическое неравенство cos(t)

    Рассмотрим решение простейших тригонометрических неравенств с косинусом на примере решения неравенства cos(t)t1 и t2=2π-arccos(1/2)=5π/3. Точка принадлежит выделенной дуге l (исключая ее концы) при условии, что π/3

  • Слайд 11
  • Слайд 12

    Тригонометрическое неравенство tg(t)≤a

    Рассмотрим способ решения тригонометрического неравенства с тангенсом на примере неравенства tg(t)≤1. период тангенса равен π Найдем сначала все решения данного неравенства, принадлежащие промежутку (-π/2; π/2), а затем воспользуемся периодичностью тангенса. Для выделения всех точек Pt правой полуокружности, значения t которых удовлетворяют данному неравенству, обратимся к линии тангенсов. Если t является решением неравенства, то ордината точки T - луч AT (см. рисунок ниже). Множество точек Pt, соответствующих точкам этого луча, - дуга l, выделенная на рисунке жирным. Следует отметить, что точка Pt1 принадлежит рассматриваемому множеству, а Pt2 нет. Найдем условие, при котором точка Pt принадлежит дуге l. t1 принадлежит интервалу (-π/2 ; π/2), и tf(t)=1, следовательно t1=arctg(1)=π/4. Значит t должно удовлетворять условию -π/2

  • Слайд 13

    Сабитова Файруза Рифовна преподаватель математики ГАОУ СПО «Сармановский аграрный колледж»

Посмотреть все слайды

Сообщить об ошибке