Содержание
-
Урок №27
Теорема о трех перпендикулярах
-
Опрос теории и проверка домашнего задания
а) Дайте определение перпендикуляра, основания перпендикуляра, расстояния от точки до плоскости, наклонной, основания наклонной, проекции наклонной.б) Сформулируйте признак перпендикулярности прямой и плоскости.в) Сформулируйте теорему, обратную теореме о свойстве медианы в равнобедренном треугольнике. Задачи №138(б) и №139(б,в)
-
Задача №11) АА1 = 5 – перпендикуляр к плоскости а , АВ – наклонная. А1В=12. Найти АВ= х.
-
Задача№2 Прямая а перпендикулярна плоскости АВС, угол АСВ равен 90о, АС = 4, МD=3. Найти МС.
-
Если прямая, проведенная на плоскости через основание наклонной, перпендикулярна ее проекции, то она перпендикулярна наклонной.
AH - перпенд к пл α. AM это наклонная к пл α; a - прямая в плоскости α через т. М a перпенд. HM. Доказать, что прямая а перпенд. АМ
-
Теорема о трех перпендикулярах
Если прямая, проведенная на плоскости через основание наклонной, перпендикулярна ее проекции, то она перпендикулярна наклонной. Доказательство: 1)АВ- перпендикуляр, 2) Проводим СА´║АВ. ( по свойству перпендикулярных прямой и плоскости) 3)АВ и А´С определяют 4) (признак перпендикулярности прямой и плоскости) 5) Если то следовательно 6)Аналогично, если и следовательно АС- наклонная,
-
Задача
Т.е. расстояния от S до сторон треугольника равны Через центр вписанной в треугольник окружности проведена прямая, перпендикулярная плоскости треугольника. Доказать, что каждая точка этой прямой равноудаленаот сторон треугольника. Решение: 1)А,В,С- точки касания сторон треугольника с окружностью, то по теореме о трех перпендикулярах: SА- перпендикуляр к этой стороне О- центр окружности, S- точка на перпендикуляре 2) Так как радиус ОА перпендикулярен стороне треугольника, 3)По теореме Пифагора: где r-радиус вписанной окружности 4) 5) А О С В S
-
Задача. Прямая а (АВС). MD = 13. АС = 15, ВС = 20. АС ВС, МD АВ. Найти MC.
-
Решение:
Из треугольника АВС найдем гипотенузу АВ. АВ=25; Соединим точки С и D. По теореме о трех перпендикулярах CD перпендикулярно AB; Следовательно, AB : AC = AC : AD. Отсюда AВ = 9; Из треугольника ADC найдем катет DC = 12; Из треугольника MDC по теореме Пифагора найдем МС; MC = 5. Задание на дом: п. 19, п.20,№140, №143, №144(решена), 153(решена)
Нет комментариев для данной презентации
Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.