Презентация на тему "Вечер старинных задач"

Презентация: Вечер старинных задач
Включить эффекты
1 из 23
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
3.1
4 оценки

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Презентация для 5-7 класса на тему "Вечер старинных задач" по математике. Состоит из 23 слайдов. Размер файла 0.54 Мб. Каталог презентаций в формате powerpoint. Можно бесплатно скачать материал к себе на компьютер или смотреть его онлайн с анимацией.

Содержание

  • Презентация: Вечер старинных задач
    Слайд 1

    Муниципальное образовательное учреждение «Средняя общеобразовательная школа №1» г.Воркуты Учитель математики Морозова Раиса Аркадьевна Вечер старинных задач

  • Слайд 2

    «…Математику уже затем учить следует, что она ум в порядок приводит» М.В.Лермонтов «Математика – первая из всех наук и полезна, и необходима для них» Бэкон Р. «Математик должен быть поэтом в душе» С.В.Ковалевская

  • Слайд 3

    Думы нездешней полна, Чуть загрустив отчего-то, Молча стоит у окна В мыслях – расчеты, расчеты… Да математике надо Мир постигать наш – и вот Страсть отстраненного взгляда В прорву пространства ведет. Пусть ей взгрустнется немножко Жалобы не услыхать… Строгая смотрит в окошко Сущее хочет позвать.

  • Слайд 4

    Фалес Милетский Математик Греции Родился в середине седьмого века до н.э., он прожил долгую, яркую жизнь. Фалес Милетский считается родоначальником математики, физики и философии. Одну из теорем Фалеса мы изучаем в школьном курсе геометрии

  • Слайд 5

    Дату появления математики как науки можно определить довольно точно – шестой век до н.э. На протяжении 20-30-ти предыдущих веков народы Древнего Востока сделали немало открытий в арифметике, геометрии, астрономии, но не единой математической науки они не создали. Грекам же это удалось в течение одного столетия, что до сих пор кажется чудом

  • Слайд 6

    Самые ранние математические тексты известные в наши дни, оставили две великие цивилизации древности – Египет и Месопотамия (или Междуречье)

  • Слайд 7

    Теперь одна часть папируса хранится в Британском музее в Лондоне, а другая находится в Нью-Йорке. Папирус Райнда переписал писец Ахмес около 1650 года до н.э. В 1858 году был найден папирус Райнда, названный так по имени своего первого владельца. Рукопись представляет собой узкую (33 см) и длинную (5,25 м) полосу папируса, содержащую 84 задачи. Автор оригинала неизвестен, установлено лишь, что текст создавался во второй половине XIX века до н.э.

  • Слайд 8

    Примерно с IV века до н.э. древние греки стали на путь самостоятельных изысканий по математике и достигли в этом направлении значительных успехов, особенно по геометрии ГРЕЦИЯ Творчество Эвклида, Архимеда и Аполония было вершиной греческой математики. В III веке до н.э. древнегреческая геометрия достигла апогея в работах Эвклида, написавшего 13 книг по геометрии, объединенных общим названием «Начала»

  • Слайд 9

    Значительных успехов в теории чисел достигли Пифагор и его ученики Самое значительное сочинение Диофанта – это его «Арифметика», которая дошла до нас в шести книгах (полагают, что их было 13). По содержанию «Арифметики» Диофанта можно судить о состоянии алгебры у древних греков

  • Слайд 10

    Пусть Диофант прожил х лет, тогда получим уравнение: х/6+х/12+х/7+х/2+5+4=х корень которого х=84

  • Слайд 11

    Я – изваяние из злата. Поэты, то злато в дар принесли: Харизий принес половину всей жертвы, Феспия часть восьмую дала; десятую Солон Часть двадцатая – жертва певца Фемисона, А девять все завершивших талантов обет, Аристоником данный. Сколько же злата поэты все вместе в дар принесли? Древнегреческая задача о статуе Минервы (Минерва – в греческой мифологии, богиня мудрости, покровительница наук, искусств и ремесел) Пусть поэтами в дар принесены Х талантов х=40 х/2+х/8+х/10+х/20+9=Х

  • Слайд 12

    Задача Пифагора Тиран острова Самос Поликрат однажды спросил на пиру у Пифагора сколько у того учеников. «Охотно скажу тебе, о Поликрат, - отвечал Пифагор. – Половина моих учеников изучает прекрасную математику, четверть исследует тайны вечной природы, седьмая часть молча упражняет силу духа, храня в сердце учение. Добавь еще к ним трех юношей, из которых Теон превосходит прочих своими способностями: сколько учеников веду я к рождению вечной истины» Сколько учеников у Пифагора? Пусть у Пифагора Х учеников, составим уравнение х/2+х/4+х/7+3=х х=28

  • Слайд 13

    ИНДИЯ Наибольших успехов индийские ученые достигли в области математики. Они являлись основоположниками арифметики и алгебры, в разработке которых пошли дальше греков. Величайшим достижением древнеиндийской математики является прежде всего открытие позиционной системы счисления, состоящей из десяти индийских цифр, включая и знак 0, называемый по-индийски «сунья», что дословно означает «ничто»

  • Слайд 14

    Ариабхат (конец I века) Брамагупта (VII века) Бхаскара (XII века)

  • Слайд 15

    «Подобно тому, как солнце затмевает своим блеском звезды, так мудрец затмевает славу других людей, предлагая и особенно решая на народных собраниях математические задачи»

  • Слайд 16

    Задача Бхаскара II(1114 – 1185 гг.) Одна треть, одна пятая и одна шестая цветков лотоса в венке посвящена богам Шиве, Вишну и Сурье, одна четвертая – Бхавани. Остальные 6 цветков предназначены почитаемому праведнику. Сколько цветков лотоса сплетено в венок? Х цветков в венчике х/3+х/5+х/6+х/4+6=х Х=120

  • Слайд 17

    Древнеиндийская задача Есть кадамба цветок. На один лепесток пчелок пятая часть опустилась. Рядом тут же росла вся в цвету сименгда, И на ней третья часть поместилась. Разность их ты найди, трижды их ты сложи, На кутай этих пчел посади. Лишь одна не нашла себе места нигде, Все летала то взад, то вперед И везде ароматов цветов наслаждалась. Назови теперь мне, подсчитавши в уме, Сколько пчелок всего здесь собралось? Х всего пчел х/5+х/3+3*(х/3-х/5)+1=х х=15

  • Слайд 18

    Задача Бхаскара I (VI век) Найти наименьшее натуральное число, дающее при делении на 2, 3, 4, 5 и 6 остаток 1 и, кроме того, делящееся на 7

  • Слайд 19

    РОССИЯ Первые сведения о развитии математики на Руси относятся к IX – XII векам. Сохранившиеся математические документы (рукописи раннего периода относятся к XV – XVII векам) Старинная русская арифметическая рукопись XVII века состоит из следующих статей: «Статья торговая» «Статья о нечестии во всяких овощах и товарах» «Статья меновая в торгу» «Складная статья торговая»

  • Слайд 20

    Задача Л.Н.Толстого Пять братьев, делили наследство – три дома. Чтобы все получили поровну в денежном выражении, браться поступили так: три старших брата взяли себе по дому, а младшим они заплатили деньги. Каждый из трех братьев заплатил 800 рублей. Много ли стоит один дом? 1200рублей

  • Слайд 21

    Задача из «курса алгебры» А.Н.Страннолюбского Два работника прожили у хозяина равное время; один из них получал по 15, а другой по 10 рублей в неделю. При окончательном расчете оказалось, что первый работник должен получить более второго именно на ту сумму, которую он забрал в течении работы, а забрал он сперва 4,5 рублей, а второй 3,5 рублей, и наконец 7 рублей. Сколько недель продолжалась работа? Х – число недель работы (15-10)*х=4,5+3,5+7 5х=15 х=3

  • Слайд 22

    Спасибо за внимание

  • Слайд 23

    Используемая литература: В.Д.Чистяков «Старинные задачи», Минск, «Высшая школа», 1966г. Я.И.Перельман «Занимательная алгебра», Москва, 1998г. Газета «Математика» №47 1997г.; №21, 2001г. Детская энциклопедия «Я познаю мир», Москва АСТ, 1997г.

Посмотреть все слайды

Сообщить об ошибке