Презентация на тему "Окружность. Задачи на построение" 7 класс

Презентация: Окружность. Задачи на построение
Включить эффекты
1 из 12
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
3.3
5 оценок

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Скачать презентацию (2.65 Мб). Тема: "Окружность. Задачи на построение". Предмет: математика. 12 слайдов. Для учеников 7 класса. Добавлена в 2016 году. Средняя оценка: 3.3 балла из 5.

Содержание

  • Презентация: Окружность. Задачи на построение
    Слайд 1

    Задачи на построение. Окружность. Московское СВУ 29.05.2016 Урок 2

  • Слайд 2

    Окружность геометрическая фигура, состоящая из всех точек плоскости, расположенных на заданном расстоянии от данной точки. Радиус окружности отрезок, соединяющий центр с какой-либо точкой окружности отрезок, соединяющий две точки окружности. Хорда хорда, проходящая через центр окружности Диаметр Кластер

  • Слайд 3

    3 Анализ.Нарисовать фигуру, установить связь между данными задачи и искомыми элементами, составить план решения задачи. Построение.Выполняется по намеченному плану выполняется циркулем и линейкой. Доказательство. Доказать, что построенная фигура удовлетворяет условиям задачи. Исследование. Выяснитьпри любых ли данных задача имеет решение, и если имеет, то сколько решений. Алгоритм решения задач на построение

  • Слайд 4

    4 Построение с помощью циркуля и линейки Простейшие задачи на построение циркулем и линейкой. На данном луче от его начала отложить отрезок, равный данному. Решение Изобразим фигуры, данные в условии задачи: луч ОС и отрезок АВ. Затем циркулем построим окружность радиуса АВ с центром О. Эта окружность пересечет луч ОС в некоторой точке D. Отрезок OD — искомый.

  • Слайд 5

    5 Построение с помощью циркуля и линейки 2. Отложить от данного луча угол, равный данному. Решение Данный угол с вершиной А и луч ОМ изображены на рисунке. Требуется построить угол, равный углу А, так, чтобы одна из его сторон совпала с лучом ОМ. Проведем окружность произвольного радиуса с центром в вершине А данного угла. Эта окружность пересекает стороны угла в точках В и С (рис. а). Затем проведем окружность того же радиуса с центром в начале данного луча ОМ. Она пересекает луч в точке D (рис. б). После этого построим окружность с центром D, радиус которой равен ВС. Окружности с центрами О и D пересекаются в двух точках. Одну из этих точек обозначим буквой Е.

  • Слайд 6

    6 Построение с помощью циркуля и линейки 2. Отложить от данного луча угол, равный данному. Докажем, что угол МОЕ — искомый. Рассмотрим треугольники ABC и ODE. Отрезки АВ и АС являются радиусами окружности с центром А, а отрезки OD и ОЕ — радиусами окружности с центром О (см. рис. б). Так как по построению эти окружности имеют равные радиусы, то AB = OD, АС = ОЕ. Также по построению ВС = DE. Следовательно, ABC = ODE по трем сторонам. Поэтому DOE = BAC, т. е. построенный угол МОЕ равен данному углу А.

  • Слайд 7

    7 Упражнение Решить задачи №№ 146, 147.

  • Слайд 8

    8 Упражнение

  • Слайд 9

    9 Упражнение

  • Слайд 10

    Задание на с/п: Ответить на вопросы 17–21 на с. 50; решить задачи №№ 144, 145.

  • Слайд 11

    Синквейн Окружность Круглая, имеющая центр, радиус, диаметр, хорду, Берем циркуль, чертим, отмечаем центр все точки равноудаленные от данной точки плоскости Похожа на обруч!

  • Слайд 12

    12 Построение с помощью циркуля и линейки Решение простейших задач на построение циркулем и линейкой. 1. На данном луче от его начала отложить отрезок, равный данному. 2. Отложить от данного луча угол, равный данному. 3. Построить биссектрису данного неразвернутого угла. 4. Построить прямую, проходящую через данную точку и перпендикулярную к прямой, на которой лежит данная точка. 5. Построить середину данного отрезка. 6. Даны прямая и точка, не лежащая на ней. Построить прямую, проходящую через данную точку и перпендикулярную к данной прямой (решение в учебнике задачи № 153). 7. Решить задачи №№ 148, 150, 155.

Посмотреть все слайды

Сообщить об ошибке