Презентация на тему "Комбинаторика. Комбинаторные задачи" 9 класс

Презентация: Комбинаторика. Комбинаторные задачи
Включить эффекты
1 из 52
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
3.3
2 оценки

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Интересует тема "Комбинаторика. Комбинаторные задачи"? Лучшая powerpoint презентация на эту тему представлена здесь! Данная презентация состоит из 52 слайдов. Средняя оценка: 3.3 балла из 5. Также представлены другие презентации по математике для 9 класса. Скачивайте бесплатно.

Содержание

  • Презентация: Комбинаторика. Комбинаторные задачи
    Слайд 1
  • Слайд 2

    На завтрак Вова может выбрать плюшку, бутерброд, пряник или кекс, а запить их он может кофе, соком или кефиром. Из скольких вариантов завтрака Вова может выбирать? Пример 1.

  • Слайд 3
  • Слайд 4

    Правило умножения. Для того чтобы найти число всех возможных исходов независимого проведение двух испытаний А и В, следует перемножить число всех исходов испытания А и число всех исходов испытания В.

  • Слайд 5

    Пример 2. Несколько стран в качестве символа своего государства решили использовать флаг в виде трех горизонтальных полос одинаковых по ширине, но разных по цвету: белый, синий, красный. Сколько стран могут использовать такую символику при условии, что у каждой страны свой, отличный от других, флаг?

  • Слайд 6

    * ** *** * ** *** ** *** ** *** * *** * *** * *** *** * *** *** * * * * * *

  • Слайд 7

    Сколько трехзначных чисел можно составить из цифр 1,3,5 и 7, используя в записи числа каждую из них не более одного раза?

  • Слайд 8

    Решение будем искать с помощью дерева возможных вариантов. 1 3 5 7 3 5 7 1 5 7 1 3 7 1 3 5 5 7 3 7 3 5 3 5 7 3 5 3 5 3 7 5 3 5 3 5 7 5 1 7

  • Слайд 9

    Рассмотрим пример. Имеются три книги. Обозначим их буквами а, б, с. Эти книги нужно расставить на полке по разному. а б с

  • Слайд 10

    а с б

  • Слайд 11

    б а с

  • Слайд 12

    Рассмотрим пример. Имеются три книги. Обозначим их буквами а, б, с. Эти книги нужно расставить на полке по разному. б с а

  • Слайд 13

    Рассмотрим пример. Имеются три книги. Обозначим их буквами а, б, с. Эти книги нужно расставить на полке по разному. с а б

  • Слайд 14

    Рассмотрим пример. Имеются три книги. Обозначим их буквами а, б, с. Эти книги нужно расставить на полке по разному. с б а

  • Слайд 15

    Перестановкой из n элементов называют каждое расположения этих элементов в определенном порядке. Обозначают Pn = n!

  • Слайд 16

    Задача№1 Сколькими способами 4 человека смогут разместиться на четырехместной скамейке?

  • Слайд 17

    Задача№2 Сколько различных четырехзначных чисел, в которых цифры не повторяются, можно составить из чисел 0,2,4,6?

  • Слайд 18

    Задача №3 Имеются девять различных книг, четыре из которых учебники. Сколькими способами можно расставить эти книги на полке так, чтобы все учебники стояли рядом?

  • Слайд 19

    Задача № 4 В расписании на понедельник шесть уроков : алгебра, геометрия, биология, история, физкультура, химия. Сколькими способами можно составить расписание уроков на этот день так, чтобы два урока математики стояли рядом.

  • Слайд 20

    Пусть имеются 4 шара и 3 пустых ячейки. Обозначили шары буквами a, b, c, d. В пустые ячейки можно по – разному разместить три шара из этого набора.

  • Слайд 21

    а b c а c b b а c c b d

  • Слайд 22

    abc, abd, acb, acd, adb, adc, bac, bad, bca, bcd, bda, bdc cab, cad, cba, cbd, cda, cdb dab, dac, dba, dbc, dca, dcb

  • Слайд 23

    Размещением из n элементов по k (k

  • Слайд 24

    A = n*(n-1)(n-2)…(n-(k-1))

  • Слайд 25

    Ann =Pn=n!

  • Слайд 26

    Задача № 5 Учащиеся второго класса изучают 8 предметов. Сколькими способами можно составить расписание на один день, чтобы в нем было 4 различных предмета?

  • Слайд 27

    Задача №6 На странице альбома 6 свободных мест для фотографий. Сколько существует способов размещения фотографий в свободные места? a) 4 фотографии; b) 6 фотографий.

  • Слайд 28

    Задача №7 Сколько трехзначных чисел ( без повторения цифр в записи числа) можно составить из цифр 0, 1, 2, 3, 4, 5, и 6?

  • Слайд 29

    Решение А73-А62= 7*6*5-6*5=6*5(7-1)=6*5*6=180

  • Слайд 30

    Задача №8 Из трехзначных чисел, записанных с помощью цифр 1, 2, 3, 4,5, 6, 7, 8, 9 (без повторений цифр). Сколько таких в которых: a) не встречаются цифры 6 и 7; b) цифра 8 является последней?

  • Слайд 31

    Задача №9 Сколько существует семизначных телефонных номеров, в которых все цифры различные и первая цифра отличается от 0?

  • Слайд 32
  • Слайд 33
  • Слайд 34
  • Слайд 35
  • Слайд 36
  • Слайд 37
  • Слайд 38
  • Слайд 39

    Если в букет не входит цветок а, а входит b, то можно получить такие букеты:

  • Слайд 40
  • Слайд 41
  • Слайд 42
  • Слайд 43
  • Слайд 44

    Сочетанием из n элементов по k называется любое множество, составленное из k элементов, выбранных из данных n элементов

  • Слайд 45

    Cnk=

  • Слайд 46

    Задача № 10 Из 15-ти членов туристической группу надо выбрать трех дежурных. Сколькими способами можно сделать этот выбор?

  • Слайд 47

    Задача №11 Из вазы с фруктами, где лежит 9 яблок и 6 груш, нужно выбрать 3 яблока и 2 груши. Сколькими способами это можно сделать?

  • Слайд 48

    Задачи для закрепления

  • Слайд 49

    Задача № I В классе 7 человек успешно занимаются математикой. Сколькими способами можно выбрать из них двоих для участия в олимпиаде?

  • Слайд 50

    Задача № II В лаборатории, в которой работают заведующий и 10 сотрудников, надо отправить в командировку 5 человек. Сколькими способами это можно сделать если, a)заведующий лаборатории должен ехать b) заведующий должен остаться.

  • Слайд 51

    Задача № III В классе учатся 16 мальчиков и 12 девочек. Для уборки территории нужно выделить 4 мальчиков и 3 девочек. Сколькими способами это можно сделать?

  • Слайд 52

    Задача № IV В библиотеке читателю предложили на выбор 10 книг и 4 журнала. Сколькими способами он может выбрать из низ 3 книги и 2 журнала?

Посмотреть все слайды

Конспект

image1.wmf

Муниципальное общеобразовательное учреждение средняя общеобразовательная школа №2 муниципального образования город Горячий Ключ

Урок по теме:

Комбинаторика.

Комбинаторные задачи.

Учитель математики

Минасян Людмила Григорьевна

МБОУ СОШ №2 г.Горячий Ключ

Цель урока: познакомить учащихся с разделом математики – комбинаторикой. Показать решение некоторых комбинаторных задач.

Ход урока: а) объяснение материала; б) закрепление материала, решение задач.

В науке и практике часто встречаются задачи, решая которые приходится составлять различные комбинации из конечного числа элементов и подсчитать число комбинаций.

Такие задачи называются комбинаторными задачами, а раздел математики, в котором рассматриваются эти задачи, называется комбинаторикой.

Слово «комбинаторика» происходит от латинского слова combinate, которое означает «соединять», «сочетать».

Рассмотрим такой

пример1.

На завтрак Вова может выбрать плюшку, бутерброд, пряник или кекс, а запить их он может кофе, соком или кефиром.

Из скольких вариантов завтрака Вова может выбирать?

Решение.

Плюшка

Бутерброд

Пряник

Кекс

Кофе

Кофе

Плюшка

Кофе

Бутерброд

Кофе

Пряник

Кофе

Кекс

Сок

Сок

Плюшка

Сок

Бутерброд

Сок

Пряник

Сок

Кекс

Кефир

Кефир

Плюшка

Кефир

Бутерброд

Кефир

Пряник

Кефир

Кекс

Всего вариантов столько же, сколько клеток в таблице.

Ответ: 12.

Однако составлять такие таблицы для каждой задачи, занимает время.

А чтобы решить такую задачу быстрее, можно воспользоваться правилом умножения.

Правило умножения.

Для того, чтобы найти число всех возможных исходов независимого проведения двух испытаний А и В , следует перемножить число всех исходов испытания А и число всех исходов испытания В.

Пример 2.

Несколько стран в качестве символа своего государства решили использовать флаг в виде трех горизонтальных полос одинаковых по ширине, но разных по цвету: белый, синий, красный.

Сколько стран могут использовать такую символику при условии, что у каждой страны свой, отличный от других, флаг?

Решение будем искать с помощью «дерева возможных вариантов».

Посмотрим на левую «веточку», идущую от «флага», пусть верхняя полоса – белого цвета, тогда средняя полоса может быть синей или красной, а нижняя – соответственно, красной или синей. Получилось два варианта цветов полос флага: белая, синяя, красная и белая, красная, синяя.

Пусть теперь верхняя полоса – синего цвета, это вторая «веточка».

Тогда средняя полоса может быть белой или красной, а нижняя - соответственно, красной или белой. Получилось еще два варианта цветов полос: синяя, белая, красная и синяя, красная, белая.

Аналогично рассматривается случай для верхней полосы красного цвета.

Получается еще два варианта: красная, белая, синяя и красная, синяя, белая.

image2.png

Всего 6 комбинаций.

Ответ: 6.

Построенная схема действительно напоминает дерево, только перевернутое. Поэтому ее называют «деревом возможных вариантов».

А вот так выглядит «дерево возможных вариантов» для такого примера 3:

Пример 3.

Сколько трехзначных чисел можно составить из цифр 1, 3, 5 и 7, используя в записи числа каждую из них не более одного раза?

Ответ: 24.image3.png

Однако многие задачи можно решить быстрее и легче. Для этого надо знать простейшие комбинации, которые можно составлять из элементов конечного множества.

И одна из первых таких комбинаций - перестановки.

Рассмотрим пример.

Имеются три книги. Обозначим их буквами a ,b и c.Эти книги нужно расставить на полке по-разному:

а b с, а с b, b а с, b с а, с а b, с b а.

Каждое из этих расположений и называют перестановкой из трех элементов.

Перестановкой из n элементов называют каждое расположение этих элементов в определенном порядке.

Обозначают: Рn = n! (n факториал).

n! =

image4.wmf.

Например: 3! =

image5.wmf, 1! = 1.

Поэтому задачу с книгами можно решить так:

Р3=

image6.wmf.

Задача №1.

Сколькими способами 4 человека могут разместиться на четырехместной скамейке?

Решение:

Р4 =

image7.wmf

Ответ: 24.

Задача №2.

Сколько различных четырехзначных чисел, в которых цифры не повторяются, можно составить из чисел 0,2, 4.6?

Решение: из цифр 0,2.4.6 можно составить Р4 перестановок. Из этого числа нужно исключить те перестановки, которые начинаются с 0.

Число таких перестановок Р3. Значит искомое число четырехзначных чисел, которые можно составить из цифр 0,2,4,6 равно:

Р4 – Р3= 4!-3!=

image8.wmf Ответ: 18.

Задача №3.

Имеются 9 различных книг, четыре из которых учебники.

Сколькими способами можно расставить книги на полке так, чтобы все учебники стояли рядом?

Решение: сначала будем рассматривать учебники как одну книгу. Тогда на полке надо расставить не 9, а 6 книг. Это можно сделать Р6 способами.

И в каждой из полученных комбинаций можно выполнить Р4 перестановок учебников. Значит, искомое число способов расположения книг равно произведению: Р6*Р4=

image9.wmf

Задача № 4.

В расписании на понедельник шесть уроков: алгебра, геометрия, биология, история, физкультура, химия.

Сколькими способами можно расставить расписание уроков на этот день так, чтобы два урока математики стояли рядом?

Решение: Р6

image10.wmf* Р2=
image11.wmf

Ответ: 1440.

Вторым видом комбинаций являются размещения.

Пусть имеются 4 шара и 3 пустых ячейки. Обозначим шары буквами a, b, c, d.

В пустые ячейки можно по-разному разместить три шара из этого набора.

a

b

c

a

c

b

b

a

c

d

c

b

и т.д. Каждую упорядоченную тройку, которую можно составить из четырех элементов, называют размещениями из четырех элементов по три и обозначают

image12.wmfА
image13.wmf

abc

abd

acb

acd

adb

adc

bac

bad

bca

bcd

bda

bdc

cab

cad

cba

cbd

cda

cdb

dab

dac

dba

dbc

dca

dcb

Из составленной таблицы видно, что таких комбинаций 24.

Размещением из n элементов по k (n

image14.wmfk) называется любое множество, состоящее из k элементов, взятых в определенном порядке из данных n элементов и обозначается А
image15.wmf.

И необязательно каждый раз составлять схемы или таблицы. Достаточно знать формулу:

А

image16.wmf

Если размещения составляются из n элементов по n, то А

image17.wmf

Задача 5.

Учащиеся второго класса изучают 8 предметов. Сколькими способами можно составить расписание на один день, чтобы в нем было 4 различных предмета.

Решение: А

image18.wmf(способов).

Задача 6.

На странице альбома 6 свободных мест для фотографий.

Сколькими способами можно вложить в свободные места

а) 4 фотографии;

б) 6 фотографий.

Решение: а) А

image19.wmf

б) А

image20.wmf

Задача 7.

Сколько трехзначных чисел (без повторения цифр в записи числа) можно составить из цифр 0,1,2,3,4,5 и 6?

Объяснение: если среди семи цифр нет нуля, то число трехзначных чисел которые можно составить из этих цифр равно числу размещений из 7 элементов по 3 А

image21.wmf. Однако, среди данных семи чисел есть цифра 0, с которой не может начинаться трехзначное число. Поэтому из размещений из 7 элементов по 3 нужно исключить те, у которых первым элементом является цифра 0.Их число равно числу размещений из 6 элементов по 2.

Значит, искомое число равно: А

image22.wmf.

Решение: А

image23.wmf

Задача 8.

Из трехзначных чисел, записанных с помощью цифр 1,2,3,4,5,6,7,8,9 (без повторения цифр), сколько таких, в которых: а) не встречаются цифры 6 и 7;

б) цифра 8 является последней?

Решение: а) А

image24.wmf

б) А

image25.wmf

Задача 9.

Сколько существует семизначных телефонных номеров, в которых все цифры различные и первая цифра отлична от 0?

Решение: А

image26.wmf

А теперь рассмотрим такой сюжет:

Имеется 5 гвоздик разного цвета. Обозначим их буквами a, b, c, d, e. Требуется составить букет из трех гвоздик.

Выясним, какие букеты можно составить.

Если в букет входит гвоздика a, то можно составить такие букеты:

abc, abd, abc, acd, ace, adc.

Если в букет не входит гвоздика a, а входит гвоздика b, то можно получить такие букеты:

bcd, bce, bdc.

Наконец, если в букет не входит ни гвоздика a,гвоздика b, то можно составить букет

cde.

Мы показали все возможные способы составления букетов, в которых по-разному сочетаются три гвоздики из данных пяти.

Говорят, что составлены всевозможные сочетания из 5-ти элементов по 3.

Сочетанием из n элементов по k называется любое множество, составленное из k элементов, выбранных из данных n элементов и обозначается С

image27.wmf

в отличие от размещений, в сочетаниях не имеет значения, в каком порядке указаны элементы.

С

image28.wmf

Поэтому пример про гвоздики можно быстро решить так:

Решение: С

image29.wmf

Задача 10.

Из 15 человек туристической группы надо выбрать трех дежурных. Сколькими способами это можно сделать?

Решение: С

image30.wmf

Задача 11.

Из вазы с фруктами, где лежат 9 яблок и 6 груш, нужно выбрать 3 яблока и 2 груши. Сколькими способами можно это сделать?

Решение: 3 яблока из 9-ти можно выбрать С

image31.wmf способами. При каждом выборе яблок груши можно выбрать С
image32.wmf способами. Поэтому по правилу умножения выбор фруктов можно сделать С
image33.wmfспособами.

Решение: С

image34.wmf=
image35.wmf

Задачи для закрепления.

Задача I.

В классе 7 человек успешно занимаются математикой.

Сколькими способами можно выбрать из них двоих для участия в математической олимпиаде?

Решение: С

image36.wmf

Задача II.

В лаборатории, в которой работают заведующий и 10 сотрудников, надо отправить в командировку 5 человек.

Сколькими способами это можно сделать, если:

а) заведующий лабораторией должен ехать в командировку;

б) заведующий должен остаться.

Решение: а) С

image37.wmf б)С
image38.wmf

Задача III.

В классе учатся 16 мальчиков и 12 девочек. Для уборки территории нужно выделить 4 мальчика и три девочки.

Сколькими способами это можно сделать?

Решение: С

image39.wmf

Задача IV.

В библиотеке читателю предложили на выбор 10 книг и 4 журнала. Сколькими способами он может выбрать из них 3 книги и 2 журнала?

Решение: С

image40.wmf.

_1331577493.unknown

_1331659018.unknown

_1331659944.unknown

_1331660329.unknown

_1331660671.unknown

_1331661445.unknown

_1331661702.unknown

_1331662086.unknown

_1331661345.unknown

_1331660440.unknown

_1331660208.unknown

_1331660239.unknown

_1331660050.unknown

_1331659369.unknown

_1331659696.unknown

_1331659170.unknown

_1331578520.unknown

_1331579064.unknown

_1331657807.unknown

_1331578924.unknown

_1331578062.unknown

_1331578423.unknown

_1331577590.unknown

_1331574043.unknown

_1331575879.unknown

_1331576626.unknown

_1331577036.unknown

_1331576092.unknown

_1331575082.unknown

_1331575717.unknown

_1331575046.unknown

_1331486535.unknown

_1331489116.unknown

_1331573995.unknown

_1331487038.unknown

_1331486219.unknown

_1331486355.unknown

_1331486067.unknown

image1.wmf

Муниципальное общеобразовательное учреждение средняя общеобразовательная школа №2 муниципального образования город Горячий Ключ

Урок по теме:

Комбинаторика.

Комбинаторные задачи.

Учитель математики

Минасян Людмила Григорьевна

МБОУ СОШ №2 г.Горячий Ключ

Цель урока: познакомить учащихся с разделом математики – комбинаторикой. Показать решение некоторых комбинаторных задач.

Ход урока: а) объяснение материала; б) закрепление материала, решение задач.

В науке и практике часто встречаются задачи, решая которые приходится составлять различные комбинации из конечного числа элементов и подсчитать число комбинаций.

Такие задачи называются комбинаторными задачами, а раздел математики, в котором рассматриваются эти задачи, называется комбинаторикой.

Слово «комбинаторика» происходит от латинского слова combinate, которое означает «соединять», «сочетать».

Рассмотрим такой

пример1.

На завтрак Вова может выбрать плюшку, бутерброд, пряник или кекс, а запить их он может кофе, соком или кефиром.

Из скольких вариантов завтрака Вова может выбирать?

Решение.

Плюшка

Бутерброд

Пряник

Кекс

Кофе

Кофе

Плюшка

Кофе

Бутерброд

Кофе

Пряник

Кофе

Кекс

Сок

Сок

Плюшка

Сок

Бутерброд

Сок

Пряник

Сок

Кекс

Кефир

Кефир

Плюшка

Кефир

Бутерброд

Кефир

Пряник

Кефир

Кекс

Всего вариантов столько же, сколько клеток в таблице.

Ответ: 12.

Однако составлять такие таблицы для каждой задачи, занимает время.

А чтобы решить такую задачу быстрее, можно воспользоваться правилом умножения.

Правило умножения.

Для того, чтобы найти число всех возможных исходов независимого проведения двух испытаний А и В , следует перемножить число всех исходов испытания А и число всех исходов испытания В.

Пример 2.

Несколько стран в качестве символа своего государства решили использовать флаг в виде трех горизонтальных полос одинаковых по ширине, но разных по цвету: белый, синий, красный.

Сколько стран могут использовать такую символику при условии, что у каждой страны свой, отличный от других, флаг?

Решение будем искать с помощью «дерева возможных вариантов».

Посмотрим на левую «веточку», идущую от «флага», пусть верхняя полоса – белого цвета, тогда средняя полоса может быть синей или красной, а нижняя – соответственно, красной или синей. Получилось два варианта цветов полос флага: белая, синяя, красная и белая, красная, синяя.

Пусть теперь верхняя полоса – синего цвета, это вторая «веточка».

Тогда средняя полоса может быть белой или красной, а нижняя - соответственно, красной или белой. Получилось еще два варианта цветов полос: синяя, белая, красная и синяя, красная, белая.

Аналогично рассматривается случай для верхней полосы красного цвета.

Получается еще два варианта: красная, белая, синяя и красная, синяя, белая.

image2.png

Всего 6 комбинаций.

Ответ: 6.

Построенная схема действительно напоминает дерево, только перевернутое. Поэтому ее называют «деревом возможных вариантов».

А вот так выглядит «дерево возможных вариантов» для такого примера 3:

Пример 3.

Сколько трехзначных чисел можно составить из цифр 1, 3, 5 и 7, используя в записи числа каждую из них не более одного раза?

Ответ: 24.image3.png

Однако многие задачи можно решить быстрее и легче. Для этого надо знать простейшие комбинации, которые можно составлять из элементов конечного множества.

И одна из первых таких комбинаций - перестановки.

Рассмотрим пример.

Имеются три книги. Обозначим их буквами a ,b и c.Эти книги нужно расставить на полке по-разному:

а b с, а с b, b а с, b с а, с а b, с b а.

Каждое из этих расположений и называют перестановкой из трех элементов.

Перестановкой из n элементов называют каждое расположение этих элементов в определенном порядке.

Обозначают: Рn = n! (n факториал).

n! =

image4.wmf.

Например: 3! =

image5.wmf, 1! = 1.

Поэтому задачу с книгами можно решить так:

Р3=

image6.wmf.

Задача №1.

Сколькими способами 4 человека могут разместиться на четырехместной скамейке?

Решение:

Р4 =

image7.wmf

Ответ: 24.

Задача №2.

Сколько различных четырехзначных чисел, в которых цифры не повторяются, можно составить из чисел 0,2, 4.6?

Решение: из цифр 0,2.4.6 можно составить Р4 перестановок. Из этого числа нужно исключить те перестановки, которые начинаются с 0.

Число таких перестановок Р3. Значит искомое число четырехзначных чисел, которые можно составить из цифр 0,2,4,6 равно:

Р4 – Р3= 4!-3!=

image8.wmf Ответ: 18.

Задача №3.

Имеются 9 различных книг, четыре из которых учебники.

Сколькими способами можно расставить книги на полке так, чтобы все учебники стояли рядом?

Решение: сначала будем рассматривать учебники как одну книгу. Тогда на полке надо расставить не 9, а 6 книг. Это можно сделать Р6 способами.

И в каждой из полученных комбинаций можно выполнить Р4 перестановок учебников. Значит, искомое число способов расположения книг равно произведению: Р6*Р4=

image9.wmf

Задача № 4.

В расписании на понедельник шесть уроков: алгебра, геометрия, биология, история, физкультура, химия.

Сколькими способами можно расставить расписание уроков на этот день так, чтобы два урока математики стояли рядом?

Решение: Р6

image10.wmf* Р2=
image11.wmf

Ответ: 1440.

Вторым видом комбинаций являются размещения.

Пусть имеются 4 шара и 3 пустых ячейки. Обозначим шары буквами a, b, c, d.

В пустые ячейки можно по-разному разместить три шара из этого набора.

a

b

c

a

c

b

b

a

c

d

c

b

и т.д. Каждую упорядоченную тройку, которую можно составить из четырех элементов, называют размещениями из четырех элементов по три и обозначают

image12.wmfА
image13.wmf

abc

abd

acb

acd

adb

adc

bac

bad

bca

bcd

bda

bdc

cab

cad

cba

cbd

cda

cdb

dab

dac

dba

dbc

dca

dcb

Из составленной таблицы видно, что таких комбинаций 24.

Размещением из n элементов по k (n

image14.wmfk) называется любое множество, состоящее из k элементов, взятых в определенном порядке из данных n элементов и обозначается А
image15.wmf.

И необязательно каждый раз составлять схемы или таблицы. Достаточно знать формулу:

А

image16.wmf

Если размещения составляются из n элементов по n, то А

image17.wmf

Задача 5.

Учащиеся второго класса изучают 8 предметов. Сколькими способами можно составить расписание на один день, чтобы в нем было 4 различных предмета.

Решение: А

image18.wmf(способов).

Задача 6.

На странице альбома 6 свободных мест для фотографий.

Сколькими способами можно вложить в свободные места

а) 4 фотографии;

б) 6 фотографий.

Решение: а) А

image19.wmf

б) А

image20.wmf

Задача 7.

Сколько трехзначных чисел (без повторения цифр в записи числа) можно составить из цифр 0,1,2,3,4,5 и 6?

Объяснение: если среди семи цифр нет нуля, то число трехзначных чисел которые можно составить из этих цифр равно числу размещений из 7 элементов по 3 А

image21.wmf. Однако, среди данных семи чисел есть цифра 0, с которой не может начинаться трехзначное число. Поэтому из размещений из 7 элементов по 3 нужно исключить те, у которых первым элементом является цифра 0.Их число равно числу размещений из 6 элементов по 2.

Значит, искомое число равно: А

image22.wmf.

Решение: А

image23.wmf

Задача 8.

Из трехзначных чисел, записанных с помощью цифр 1,2,3,4,5,6,7,8,9 (без повторения цифр), сколько таких, в которых: а) не встречаются цифры 6 и 7;

б) цифра 8 является последней?

Решение: а) А

image24.wmf

б) А

image25.wmf

Задача 9.

Сколько существует семизначных телефонных номеров, в которых все цифры различные и первая цифра отлична от 0?

Решение: А

image26.wmf

А теперь рассмотрим такой сюжет:

Имеется 5 гвоздик разного цвета. Обозначим их буквами a, b, c, d, e. Требуется составить букет из трех гвоздик.

Выясним, какие букеты можно составить.

Если в букет входит гвоздика a, то можно составить такие букеты:

abc, abd, abc, acd, ace, adc.

Если в букет не входит гвоздика a, а входит гвоздика b, то можно получить такие букеты:

bcd, bce, bdc.

Наконец, если в букет не входит ни гвоздика a,гвоздика b, то можно составить букет

cde.

Мы показали все возможные способы составления букетов, в которых по-разному сочетаются три гвоздики из данных пяти.

Говорят, что составлены всевозможные сочетания из 5-ти элементов по 3.

Сочетанием из n элементов по k называется любое множество, составленное из k элементов, выбранных из данных n элементов и обозначается С

image27.wmf

в отличие от размещений, в сочетаниях не имеет значения, в каком порядке указаны элементы.

С

image28.wmf

Поэтому пример про гвоздики можно быстро решить так:

Решение: С

image29.wmf

Задача 10.

Из 15 человек туристической группы надо выбрать трех дежурных. Сколькими способами это можно сделать?

Решение: С

image30.wmf

Задача 11.

Из вазы с фруктами, где лежат 9 яблок и 6 груш, нужно выбрать 3 яблока и 2 груши. Сколькими способами можно это сделать?

Решение: 3 яблока из 9-ти можно выбрать С

image31.wmf способами. При каждом выборе яблок груши можно выбрать С
image32.wmf способами. Поэтому по правилу умножения выбор фруктов можно сделать С
image33.wmfспособами.

Решение: С

image34.wmf=
image35.wmf

Задачи для закрепления.

Задача I.

В классе 7 человек успешно занимаются математикой.

Сколькими способами можно выбрать из них двоих для участия в математической олимпиаде?

Решение: С

image36.wmf

Задача II.

В лаборатории, в которой работают заведующий и 10 сотрудников, надо отправить в командировку 5 человек.

Сколькими способами это можно сделать, если:

а) заведующий лабораторией должен ехать в командировку;

б) заведующий должен остаться.

Решение: а) С

image37.wmf б)С
image38.wmf

Задача III.

В классе учатся 16 мальчиков и 12 девочек. Для уборки территории нужно выделить 4 мальчика и три девочки.

Сколькими способами это можно сделать?

Решение: С

image39.wmf

Задача IV.

В библиотеке читателю предложили на выбор 10 книг и 4 журнала. Сколькими способами он может выбрать из них 3 книги и 2 журнала?

Решение: С

image40.wmf.

_1331577493.unknown

_1331659018.unknown

_1331659944.unknown

_1331660329.unknown

_1331660671.unknown

_1331661445.unknown

_1331661702.unknown

_1331662086.unknown

_1331661345.unknown

_1331660440.unknown

_1331660208.unknown

_1331660239.unknown

_1331660050.unknown

_1331659369.unknown

_1331659696.unknown

_1331659170.unknown

_1331578520.unknown

_1331579064.unknown

_1331657807.unknown

_1331578924.unknown

_1331578062.unknown

_1331578423.unknown

_1331577590.unknown

_1331574043.unknown

_1331575879.unknown

_1331576626.unknown

_1331577036.unknown

_1331576092.unknown

_1331575082.unknown

_1331575717.unknown

_1331575046.unknown

_1331486535.unknown

_1331489116.unknown

_1331573995.unknown

_1331487038.unknown

_1331486219.unknown

_1331486355.unknown

_1331486067.unknown

Скачать конспект

Сообщить об ошибке