Презентация на тему "Комплексные числа" 10 класс

Презентация: Комплексные числа
Включить эффекты
1 из 18
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
0.0
0 оценок

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Посмотреть презентацию на тему "Комплексные числа" для 10 класса в режиме онлайн с анимацией. Содержит 18 слайдов. Самый большой каталог качественных презентаций по математике в рунете. Если не понравится материал, просто поставьте плохую оценку.

  • Формат
    pptx (powerpoint)
  • Количество слайдов
    18
  • Аудитория
    10 класс
  • Слова
    алгебра
  • Конспект
    Отсутствует

Содержание

  • Презентация: Комплексные числа
    Слайд 1

    Комплексные числа

  • Слайд 2

    После изучения темы «Комплексные числа учащиеся должны: Знать: алгебраическую, геометрическую и тригонометрическую формы комплексного числа. Уметь: производить над комплексными числами операции сложения, умножения, вычитания, деления, возведения в степень, извлечение корня из комплексного числа; переводить комплексные числа из алгебраической формы в геометрическую и тригонометрическую; пользоваться геометрической интерпретацией комплексных чисел; в простейших случаях находить комплексные корни уравнений с действительными коэффициентами.

  • Слайд 3

    Какие числовые множества Вам знакомы?

    N Z Q R I. Подготовка к изучению нового материала

  • Слайд 4

    Сложение, умножение Вычитание, деление, извлечение корней Сложение, вычитание, умножение Деление, извлечение корней Сложение, вычитание, умножение, деление Извлечение корней из неотрицательных чисел Сложение, вычитание, умножение, деление, извлечение корней из неотрицательных чисел Извлечение корней из произвольных чисел Комплексные числа, C Все операции

  • Слайд 5

    Минимальные условия, которым должны удовлетворять комплексные числа: С1) Существует квадратный корень из , т.е. существует комплексное число, квадрат которого равен . С2) Множество комплексных чисел содержит все действительные числа. С3) Операции сложения, вычитания, умножения и деления комплексных чисел удовлетворяют обычным законам арифметических действий (сочетательному, переместительному, распределительному). Выполнение этих минимальных условий позволяет определить все множество С комплексных чисел.

  • Слайд 6

    Мнимые числа

    i = -1, i – мнимая единица i, 2i, -0,3i — чисто мнимые числа Арифметические операции над чисто мнимыми числами выполняются в соответствии с условием С3. где aи b— действительные числа. В общем виде правила арифметических операций с чисто мнимыми числами таковы:

  • Слайд 7

    Комплексные числа

    Определение 1.Комплексным числом называют сумму действительного числа и чисто мнимого числа. Определение 2.Два комплексных числа называют равными, если равны их действительные части и равны их мнимые части:

  • Слайд 8

    Классификация комплексных чисел

    Комплексные числа a + bi Действительные числа b = o Мнимые числа b ≠ o Рациональные числа Иррациональные числа Мнимые числа с ненулевой действительной частью a ≠ 0, b ≠ 0. Чисто мнимые числа a = 0, b ≠ 0.

  • Слайд 9

    Арифметические операции над комплексными числами

    (а + bi) + (c + di) = (а + с) + (b + d)i (а + bi) - (c + di) = (а - с) + (b - d)i (а + bi)·(с + di) = (ac - bd) + (ad + bc)i

  • Слайд 10

    Сопряженные комплексные числа

    Определение: Если у комплексного числа сохранить действительную часть и поменять знак у мнимой части, то получится комплексное число, сопряженное данному. Если данное комплексное число обозначается буквой z, то сопряженное число обозначается : : . Из всех комплексных чисел действительные числа (и только они) равны своим сопряженным числам. Числаa + bi и a - biназываются взаимно сопряженными комплексными числами.

  • Слайд 11

    Свойства сопряженных чисел

    Сумма и произведение двух сопряженных чисел есть число действительное. Число, сопряженное сумме двух комплексных чисел, равно сумме сопряженных данным числам. Число, сопряженное разности двух комплексных чисел, равно разности сопряженных данным числам. Число, сопряженное произведению двух комплексных чисел, равно произведению сопряженных данным числам.

  • Слайд 12

    Число, сопряженное п-ой степеникомплексного числа z, равно п-ой степени числа, сопряженного к числу z, т.е. Число, сопряженное частному двух комплексных чисел, из которых делитель отличен от нуля, равно частному сопряженных чисел, т.е.

  • Слайд 13

    Степени мнимой единицы

    По определению первой степенью числа i является само число i, а второй степенью – число -1: . Более высокие степени числа i находятся следующим образом: i4 = i3 ∙ i = -∙i2= 1; i5 = i4 ∙ i = i; i6 = i5 ∙ i= i2= - 1 и т.д. i1 = i, i2 = -1 Очевидно, что при любом натуральном n i4n = 1; i4n+1 = i; i4n +2 = - 1 i4n+3 = - i.

  • Слайд 14

    Извлечение квадратных корней из комплексных чисел в алгебраической форме.

    Определение. Число w называют квадратным корнем из комплексного числа z, если его квадрат равен z: Теорема. Пусть z=a+bi – отличное от нуля комплексное число. Тогда существуют два взаимно противоположных комплексных числа, квадраты которых равны z. Если b≠0, то эти два числа выражаются формулой:

  • Слайд 15

    Геометрическое изображение комплексных чисел.

    Комплексному числу z на координатной плоскости соответствует точка М(a, b). Часто вместо точек на плоскости берут их радиусы-векторы Определение:Модулем комплексного числа z = a + bi называют неотрицательное число , равное расстоянию от точки М до начала координат b a М (a, b) y x O φ

  • Слайд 16

    Тригонометрическая форма комплексного числа

    где φ – аргумент комплексного числа, r = - модуль комплексного числа,

  • Слайд 17

    Умножение и деление комплексных чисел, заданных в тригонометрической форме

    Теорема 1. Если и то: б) а) Теорема 2 (формула Муавра). Пусть z — любое отличное от нуля комплексное число, п — любое целое число. Тогда

  • Слайд 18

    Извлечение корня из комплексного числа.

    Теорема. Для любого натурального числа n и отличного от нуля комплексного числа z существуют n различных значений корня n-степени. Если

Посмотреть все слайды

Сообщить об ошибке