Содержание
-
Решение квадратных уравнений с параметрами
Схема исследования уравнения Если А=0, то В ∙х + с = 0 , х = Если А≠0, то находим дискриминант а) Д >0 б) Д
-
Пример 1. При каких значениях параметра а уравнение имеет 1 корень (совпадающие корни) ? Решение. Найдем все значения параметра а, при которых уравнение имеет 1 корень D = 0 . = 0 Ответ.
-
Пример 1. Найти все значения параметра а, для которых уравнение а) имеет 2 различных корня; б) не имеет корней; в) имеет 2 равных корня. Решение. Данное уравнение по условию является квадратным, поэтому а-1 ≠0. Найдем дискриминант уравнения а) Д >0, а≠1 4(5а+4) ) >0 , а > -4/5. б) Д -4/5 и а≠1 , то два различных корня, если а
-
Пример 2. При каких значениях параметра а уравнение не имеет решений ? Решение. а = 2, а = -1 При а=2, 3х+1=0, х = - 1/3 при а = -1, , не имеет решений. 2) а 2 , а -1 В данном случае уравнение является квадратным и не имеет решений, если дискриминант меньше нуля Д = Д
-
Пример 3. При каких значениях параметра а уравнение имеет единственное решение?
-
Пример 3. При каких значениях параметра а уравнение имеет единственное решение? Решение. По условию задачи уравнение необязательно является квадратным, поэтому рассмотрим два случая 1) Если а = -6,то -12х+1=0, х = 1/12. 2) Если а ≠ -6, то квадратное уравнение имеет единственное решение, если Д =0 Ответ: при
-
Пример 4. Для всех значений параметра а решить уравнение
-
Пример 4. Для всех значений параметра а уравнение Решение. 1) Если а = 1,то уравнение имеет вид -2х+3=0, х = 3/2. 2) Если а ≠ 1. Найдем дискриминант уравнения В зависимости от значения Д возможны случаи. а) Уравнение не имеет корней б) тогда в) Ответ: если а=1,то х = 3/2. а=2, то х=2, а>2, то -нет решений а
-
Теорема Виета
Если корни квадратного уравнения то
-
Равенства, которые необходимо знать
Если корни квадратного уравнения , то
-
Пример 1. Найти сумму и произведение корней уравнения
-
Пример 1. Найти сумму и произведение корней уравнения Решение. 1) Проверка: имеет ли уравнение действительные корни? Уравнение имеет действительные корни. 2) Нахождение суммы и произведения корней уравнения с использованием теоремы Виета.
-
Пример 2. Найти сумму и произведение корней уравнения
-
Пример 2. Найти сумму и произведение корней уравнения Решение. Проверка: имеет ли уравнение действительные корни? Уравнение не имеет действительных корней. Ответ.Уравнение не имеет действительных корней.
-
Пример 3. При каких значениях параметра а произведение корней уравненияравно 10 ?
-
Пример 3. При каких значениях параметра а произведение корней уравненияравно 10 ? Решение. 1) Найдем все значения параметра а, при которых уравнение имеет действительные решения. 2) По теореме Виета произведение корней уравнения равно 10, если Д≥ 0 Решение системы: Ответ:
-
Пример 4 Не решая уравнения найти , где корни уравнения Ответ:при а = 0 Ответ: Пример 5. При каких значениях параметра а сумма квадратов корней уравнения равна 4?
-
Пример 6 При каких значениях параметра р разность корней уравнения равна 9. Ответ: при р = -81и р =1
-
Применение теоремы Виета при исследовании знаков корней квадратного трехчлена
Уравнение имеет корни одного знака, если Уравнение имеет корни разных знаков, если Уравнение имеет положительные корни, если Уравнение имеет отрицательные корни, если
-
Пример 1. При каких значениях параметра а уравнение имеет корни разных знаков ? Решение. 1) Найдем все значения параметра а, при которых уравнение имеет действительные решения. 2) Уравнение имеет корни разных знаков, если ,Д> 0 Решение системы: Ответ:
-
Пример 2. При каких значениях параметра а уравнение имеет а) корни разных знаков; б) корни одного знака; в) положительные корни Решение. а) исходное уравнение имеет корни разных знаков, если выполняется условие По формулам Виета
-
б) исходное уравнение имеет корни одного знака, если выполняется условие в) ) исходное уравнение имеет положительные корни, если выполняется условие Ответ: если ,то уравнение имеет корни разных знаков, если , то корни – одного знака; если , то положительные корни.
Нет комментариев для данной презентации
Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.