Содержание
-
Пирамида, вписанная в конус
Пирамида называется вписанной в конус, если ее основание вписано в основание конуса, а вершина совпадает с вершиной конуса. При этом конус называется описанным около пирамиды. Около пирамиды можно описать конус тогда и только тогда, когда около ее основания можно описать окружность.
-
Упражнение 1
Найдите сторону основания правильной треугольной пирамиды, вписанной в конус, радиус основания которого равен 1. Ответ:
-
Упражнение 2
Найдите сторону основания правильной четырехугольной пирамиды, вписанной в конус, радиус основания которого равен 1. Ответ:
-
Упражнение 3
Найдите сторону основания правильной шестиугольной пирамиды, вписанной в конус, радиус основания которого равен 1. Ответ: 1.
-
Пирамида, описанная около конуса
Пирамида называется описанной около конуса, если ее основание описано около основания конуса, а вершина совпадает с вершиной конуса. При этом конус называется вписанным в пирамиду. В пирамиду можно вписать конус тогда и только тогда, когда в ее основание можно вписать окружность.
-
Упражнение 1
Найдите сторону основания правильной треугольной пирамиды, описанной около конуса, радиус основания которого равен 1. Ответ:
-
Упражнение 2
Найдите сторону основания правильной четырехугольной пирамиды, описанной около конуса, радиус основания которого равен 1. Ответ: 2.
-
Упражнение 3
Найдите сторону основания правильной шестиугольной пирамиды, описанной около конуса, радиус основания которого равен 1. Ответ:
-
Сфера, вписанная в конус
Сфера называется вписанной в конус, если она касается его основания и боковой поверхности (касается каждой образующей). При этом конус называется описанным около сферы. В любой конус (прямой, круговой) можно вписать сферу. Ее центр находится на высоте конуса, а радиус равен радиусу окружности, вписанной в треугольник, являющийся осевым сечением конуса. Напомним, что радиус r окружности, вписанный в треугольник, находится по формуле где S – площадь, p – полупериметр треугольника.
-
Упражнение 1
В конус, радиус основания которого равен 1, а образующая равна 2, вписана сфера. Найдите ее радиус. Решение. Треугольник SAB равносторонний. Высота SH равна Площадь S равна Полупериметр p равен 3. По формуле r = S/p получаем
-
Упражнение 2
В конус, радиус основания которого равен 2, вписана сфера радиуса 1. Найдите высоту конуса. Решение. Обозначим h высоту SH конуса. Из формулы r = S/pимеем: где r = 1, a = FG = 4, p = Решая уравнение находим
-
Упражнение 3
Радиус основания конуса равен 1. Образующая наклонена к плоскости основания под углом 45о. Найдите радиус вписанной сферы. Ответ: Решение. Высота SH конуса равна 1. Образующая . Полупериметр p равен По формуле r = S/p, имеем
-
Упражнение 4
Высота конуса равна 8, образующая 10. Найдите радиус вписанной сферы. Ответ: r = 3. Решение. Радиус основания конуса равен 6. Площадь треугольника SFG равна 48, полупериметр 16. По формуле r = S/p имеем r = 3.
-
Упражнение 5
Можно ли вписать сферу в наклонный конус? Ответ: Нет.
-
Сфера, вписанная в усеченный конус
Сфера называется вписанной в усеченный конус, если она касается его оснований и боковой поверхности (касается каждой образующей). При этом усеченный конус называется описанным около сферы. В усеченный конус можно вписать сферу, если в его осевое сечение можно вписать окружность. Радиус этой окружности будет равен радиусу вписанной сферы.
-
Упражнение 1
В усеченный конус, радиусы оснований которого равны 2 и 1, вписана сфера. Найдите радиус сферы и высоту усеченного конуса. Решение. Имеем: A1B = A1O1= 2, A2B = A2O2= 1. Следовательно, A1A2 = 3,A1C = 1. Таким образом,
-
Упражнение 2
В усеченный конус, радиус одного основания которого равен 2, вписана сфера радиуса 1. Найдите радиус второго основания. Решение. Пусть A1O1= 2. Обозначимr = A2O2. Имеем: A1A2 = 2+r, A1C = 2 – r. По теореме Пифагора, имеет место равенство из которого следует, что выполняется равенство Решая полученное уравнение относительно r, находим
-
Упражнение 3
В усеченном конусе радиус большего основания равен 2, образующая наклонена к плоскости основания под углом 60о. Найдите радиус вписанной сферы. Решение. Заметим, что осевым сечением конуса, из которого получен усеченный конус, является равносторонний треугольник со стороной 2. Радиус r сферы, вписанной в усеченный конус, равен радиусу окружности, вписанной в этот равносторонний треугольник, т.е.
-
Упражнение 4
Образующая усеченного конуса равна 2, площадь осевого сечения 3. Найдите радиус вписанной сферы. Ответ: Решение. Воспользуемся формулой r = S/p, где S – площадь осевого сечения, p – полупериметр. В нашем случае S = 3. Для нахождения полупериметра напомним, что для четырехугольника, описанного около окружности, суммы противоположных сторон равны.Значит, полупериметр равен удвоенной образующей цилиндра, т.е. p = 4. Следовательно, r = ¾.
-
Упражнение 5
Можно ли вписать сферу в усеченный наклонный конус. Ответ: Нет.
-
Сфера, описанная около конуса
Сфера называется описанной около конуса, если вершина и окружность основания конуса лежат на сфере. При этом конус называется вписанным в сферу. Около любого конуса (прямого, кругового) можно описать сферу. Ее центр находится на высоте конуса, а радиус равен радиусу окружности, описанной около треугольника, являющимся осевым сечением конуса. Напомним, что радиус R окружности, описанной около треугольника, находится по формуле где S – площадь, a, b, c –стороны треугольника.
-
Упражнение 1
Около конуса, радиус основания которого равен 1, а образующая равна 2, описана сфера. Найдите ее радиус. Решение. Треугольник SAB равносторонний со стороной 2. Высота SH равна Площадь S равна По формуле R = abc/4S получаем
-
Упражнение 2
Около конуса, радиус основания которого равен 4, описана сфера радиуса 5. Найдите высоту h конуса. Решение. Имеем, OB = 5, HB = 4. Следовательно, OH = 3. Учитывая, что SO = OB = 5, получаемh = 8. Ответ: h = 8.
-
Упражнение 3
Радиус основания конуса равен 1. Образующая наклонена к плоскости основания под углом 45о. Найдите радиус описанной сферы. Ответ: R = 1. Решение. Треугольник SAB – прямоугольный, равнобедренный. Следовательно, радиус R описанной сферы равен радиусу основания цилиндра, т.е. R = 1.
-
Упражнение 4
Высота конуса равна 8, образующая 10. Найдите радиус описанной сферы. Решение. В треугольнике SAB имеем: SA = SB = 10, SH = 8. По теореме Пифагора, AH = 6 и, следовательно, S = 48. Используя формулу R = abc/4S, получаем
-
Упражнение 5
Можно ли описать сферу около наклонного конуса? Ответ: Да.
-
Сфера, описанная около усеченного конуса
Сфера называется описанной около усеченного конуса, если окружности оснований усеченного конуса лежат на сфере. При этом усеченный конус называется вписанным в сферу. Около усеченного конуса можно описать сферу, если около его осевого сечения можно описать окружность. Радиус этой окружности будет равен радиусу описанной сферы.
-
Упражнение 1
Около усеченного конуса, радиусы оснований которого равны 2 и 1, а образующая равна 2, описана сфера. Найдите ее радиус. Решение. Заметим, что A1O1B2O2 и O1B1B2A2– ромбы. Треугольники A1O1A2, O1A2B2, O1B1B2– равносторонние и, значит, A1B1–диаметр. Следовательно, R =2. Ответ: R = 2,
-
Упражнение 2
Радиус меньшего основания усеченного конуса равен 1, образующая равна 2 и составляет угол 45о с плоскостью другого основания. Найдите радиус описанной сферы. Решение. Имеем A2O2 = 1, A1A2 = 2, O1O2 = , OO1 = O1C = 1. Следовательно, OO2 = 1 + и, значит,
-
Упражнение 3
Радиус одного основания усеченного конуса равен 4, высота 7, радиус описанной сферы 5. Найдите радиус второго основания усеченного конуса. Решение. Имеем OO1 = 3, OO2 = 4 и, следовательно, O2A2 = 3. Ответ: 3.
-
Упражнение 4
Найдите радиус сферы, описанной около усеченного конуса, радиусы оснований которого равны 2 и 4, а высота равна 5. Учитывая, что O1O2 = 6, имеем равенство Решая его относительно R, находим Решение. Обозначим R радиус описанной сферы. Тогда
-
Упражнение 5
Можно ли описать сферу около усеченного наклонного конуса. Ответ: Нет.
Нет комментариев для данной презентации
Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.