Содержание
- 
              
            
Урок по алгебре и началам анализа и информатике в 11 классе 5klass.net
 - 
              
            
Тема урока:«Построение графиков функций и уравнений, содержащих переменную под знаком модуля»
 - 
              
            
Тип урока:
«Урок обобщения и систематизации знаний»
 - 
              
            
Технология урока
Проектная деятельность, интегрированный урок (математика + информатика).
 - 
              
            
Задачи:
актуализация знаний о графиках функций и уравнений, закрепление знаний о построении графиков линейной, квадратичной и тригонометрической функций, повторение преобразования симметрии относительно прямой; знакомство с графиком логарифмической функции; укрепление умений и навыков в работе по образцу и в сходных условиях; перенос знаний в новые условия.
 - 
              
            
Основная цель урока
чтобыучащиеся самостоятельно овладели новыми знаниями, с помощью наводящих вопросов учителя переносили усвоенные знания в новые условия, творчески применяли их.
 - 
              
            
Рефлексия Линейная функция Тригонометрическая функция Квадратичная функция У=f(|x|) |У|=f(x) У=|f(x)| Задание классу вопрос классу Домашнее задание
 - 
              
            
y = x – 2 и y =│x - 2│
 - 
              
            
 - 
              
            
 - 
              
            
 - 
              
            
y = x – 2 и y =│x│– 2
 - 
              
            
 - 
              
            
 - 
              
            
 - 
              
            
y = x – 2 и │y│= x - 2
 - 
              
            
 - 
              
            
│y│= x - 2
 - 
              
            
। y।=x- 2
 - 
              
            
y = x2 – 2x – 3и y =│x2 – 2x - 3│
 - 
              
            
 - 
              
            
 - 
              
            
 - 
              
            
y = x2 – 2x – 3и y =│x│2 – 2│x│– 3
 - 
              
            
 - 
              
            
 - 
              
            
 - 
              
            
y = x2 – 2x – 3и │y│= x2 – 2x - 3
 - 
              
            
 - 
              
            
│y│= x2 – 2x - 3
 - 
              
            
। y।=x2 – 2x - 3
 - 
              
            
y = sinx иy = │sinx│
 - 
              
            
 - 
              
            
 - 
              
            
 - 
              
            
y = sinx иy = sin│x│
 - 
              
            
 - 
              
            
 - 
              
            
 - 
              
            
y = sinx и │y│= sinx
 - 
              
            
 - 
              
            
।y।=sinx
 - 
              
            
।y।=sinx
 - 
              
            
Подведение итогов (обобщение).
 - 
              
            
y = f(x) и y =│f(x)│
 - 
              
            
y = f(x)
 - 
              
            
y =।f(x)।
 - 
              
            
y = f(x) y =।f(x)।
 - 
              
            
y = f(x) и y = f(│x│)
 - 
              
            
y = f(x)
 - 
              
            
y =f(।x।)
 - 
              
            
y = f(x) y =f(।x।)
 - 
              
            
y = f(x) и │y│= f(x)
 - 
              
            
y = f(x)
 - 
              
            
।y।= f(x)
 - 
              
            
y = f(x) ।y।= f(x)
 - 
              
            
В 11-ом классе мы будем изучать логарифмическую функцию. График функции y=ln x
 - 
              
            
Попробуйте самостоятельно построить графики:
1.у= |lnx| 2. y= ln |x| 3. |y|= lnx ответы lnx
 - 
              
            
y = lnx и y =│lnx│
 - 
              
            
 - 
              
            
y =।lnx।
 - 
              
            
y =।lnx।
 - 
              
            
y = lnx и y = ln│x│
 - 
              
            
 - 
              
            
 - 
              
            
 - 
              
            
y = lnx и │y│= lnx
 - 
              
            
 - 
              
            
।y।= lnx
 - 
              
            
।y।= logx ।y।= lnx
 - 
              
            
Ответы:
।y।= lnx y =।lnx।
 - 
              
            
Домашнее задание:
Для функций y = x-2; y =х2-2x-3; y = sinx Продумать построение графиков у = |f(|x|)| |у|=|f(|x|)|
 - 
              
            
Что сделали:
Закрепили знания на ранее изученных функциях; Перенесли эти знания на новую функцию.
 - 
              
            
Вопрос классу.
Мы достигли поставленной цели?
 
                  
                
                  
                
                  
                
                  
                
                  
                
                  
                
                  
                
                  
                
                  
                
                  
                
                  
                
                  
                
                  
                
                  
                
                  
                
                  
                
                  
                
                  
                
                  
                
                  
                
                  
                
                  
                
                  
                
                  
                
                  
                
                  
                
                  
                
                  
                
                  
                
                  
                
                  
                
                  
                
                  
                
                  
                
                  
                
                  
                
                  
                
                  
                
                  
                
                  
                
                  
                
                  
                
                  
                
                  
                
                  
                
                  
                
                  
                
                  
                
                  
                
                  
                
                  
                
                  
                
                  
                
                  
                
                  
                
                  
                
                  
                
                  
                
                  
                
                  
                
                  
                
                  
                
                  
                
                  
                
                  
                
                  
                
                  
                
                  
                
                  
                
                  
                
                  
                
                  
                
                  
                
                  
                
Нет комментариев для данной презентации
Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.