Содержание
-
«Применение производной для исследования функции»
-
Справимся легко!
№1. По графику функции y=f(x) ответьте на вопросы: Сколько точек максимума имеет эта функция? Назовите точки минимума функции. Сколько промежутков возрастания у этой функции? Назовите наименьший из промежутков убывания этой функции.
-
Легко ли?
№2. (задание В5 ЕГЭ по математике) По графику функции y=f ´(x) ответьте на вопросы: Сколько точек максимума имеет эта функция? Назовите точки минимума функции. Сколько промежутков возрастания у этой функции? Найдите длину промежутка убывания этой функции.
-
Для нас задача…
Составить (создать, разработать) правило (алгоритм), с помощью которого можно исследовать функции на монотонность и экстремумы по её производной.
-
-
-
Теорема 1
Если во всех точках открытого промежутка Х производная f ´(x) больше или равна нулю (причем f ´(x) =0 лишь в отдельных точках), то функция y=f(x) возрастает на промежутке Х.
-
Теорема 2
Если во всех точках открытого промежутка Х производная f ´(x) меньше или равна нулю (причем f ´(x) =0 лишь в отдельных точках), то функция y=f(x) убывает на промежутке Х.
-
Теорема 3
Если функция y=f (x) имеет экстремум в точке х0,то в этой точке производная функции либо равна нулю, либо не существует.
-
-
№1. Непрерывная функция y=f(x) задана на [-10;11]. На рисунке изображён график её производной. Укажите количество промежутков возрастания функции.
-
№2. Непрерывная функция y=f(x) задана на (-10;6). На рисунке изображён график её производной. Укажите количество точек графика этой функции, в которых касательная параллельна оси ОХ.
-
№3. Непрерывная функция y=f(x) задана на (-6;8). На рисунке изображён график её производной. Укажите длину промежутка убывания этой функции.
-
№4. Непрерывная функция y=f(x) задана на (-4;10). На рисунке изображён график её производной. Укажите число точек экстремума этой функции.
Нет комментариев для данной презентации
Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.