Содержание
-
Производная
Помни слова великого ученого: «Математику уже затем учить надо, что она ум в порядок приводит.» М.В.Ломоносов. Определение. Правила и формулы дифференцирования. 10 класс.
-
Историческая страничка
1. Выражение вида f появилось уже в конце 17 в. и означает «приращение». 2. Термин производная ввел в 1797г. Ж. Лагранж 3.И. Ньютон называл производную функцию флюксией , а саму функцию – флюентой. 4.Раздел математики, в котором изучаются производные и их применения к исследованию функций , называется дифференциальным исчислением. 5.Дифференциальное исчисление создано Ньютоном и Лейбницем в конце 17 столетия. 1736-1813гг. 1643-1727гг. 1646-1716гг.
-
Приращение аргумента, приращение функции.
Пусть х – произвольная точка, лежащая в некоторой окрестности фиксированной точки х0. Разность х-х0 называется приращением независимой переменной (или приращением аргумента) в точке х0 и обозначается ∆х. ∆х = х – х0 – приращение независимой переменной Приращением функции f в точке x0называется разность между значениями функции в произвольной точке и значением функции в фиксированной точке. f(х) – f(х0)=f(х0+∆х) – f(х0) – приращение функции f ∆f=f(х0+∆х) – f(х0)
-
Определение производной.
Отношение приращения функции к приращению аргумента называется разностным отношением Производной функции f в точке х0 называется число к которому стремиться разностноеотношение: при ∆х 0. Задача. Найти производную функции f(x)=x2, используя определение. Решение. 1) f(x0)=x02- значение функции в фиксированной точке. f(x0+∆x)=(x0+∆x)2-значение функции в произвольной точке. 2) Найдём приращение функции: ∆f=f(x0+∆x)-f(x0)=(x0+∆x)2-x02 =x02+2x0∆x+∆x2-x02=2x0∆x+∆x2. 3)Найдем разностное отношение: 4)При ∆x 0 2х0+∆х 2х0, значит (х02)'=2х0. 5)Для любого х: (х2)'=2х.
-
Основные формулы дифференцирования.
(xn)'=nxn-1 – производная степенной функции Частные случаи: 2)(kx+b)'=k-производная линейной функции 3)с'=0-производная постоянной 4)Производные тригонометрических функций: a)(sinx)'=cosx b)(cosx)'=-sinx c)(tgx)'=1/cos2x d)(ctgx)'=-1/sin2x
-
Основные правила дифференцирования
Если функции u иv дифференцируемы в точке х0, то справедливы следующие правила: 1)(u+v)'=u'+v' 2)(uv)'=u'v+uv' 3)(cu)'=cu' 4)(u/v)'=u'v-uv'/v2,v не равно нул'ю 5) h' (x0)=g' (f(x0))f '(x0)
-
Геометрический смысл производной
Геометрический смысл производной со- стоит в том, что производная в точке х0 равна угловому коэффициенту касательной в точке х0 и тангенсу угла наклона касатель- ной k=tgα=∆y/∆x
-
Механический смысл производной
Механический смысл производной состо- ит в том, что производная пути по време- ни равна мгновенной скорости в момент времени t0: S'(t0)=V(t0).
-
Образцы решения задач.
Решая примеры, проговаривай вслух. Помни: «Мысль рождается с собственной речи!»
-
Продифференцируй функцию: 1)f(x)=4/(9+7x)5 2)g(x)=x2sin2x 3)y=1/cos2x 4)u(x)=x2/x3-1 Найди угловой коэффициент касательной к графику функции у=15х+cosx в точке с абсциссой х0=-. Найди точки, в которых f‘(x)=0, f(x)'>0,если f(x)=2x+cos(4x- ). Задай формулой хотя бы одну функцию, производная которой равна: а) 4x+5 б) 6x2-sinx Проверь свои знания!
-
Подготовься к ЕГЭ.
Найди производную функций: у=(7х+3)3 у=х2/х+3 у=3х4+sinx+5 y=tgx+3sin2x Найдитангенсугланаклонакасательной,проведённой к графику функции у=-4/х в точке с абсциссой равной -3. Найди значение производной функции у=хcosх в точке х0=π. Решить уравнение f'(x)=0,если f(x)=x3-2x2
-
Желаем успехов в изучении математики! Авторы: Костышева В.В. – учитель математики ЮСШ№2 Белова О.В. - учитель информатики учащиеся 10-б класса. г.Юхнов. 2005г.
Нет комментариев для данной презентации
Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.