Содержание
-
Теорема Безу. Схема Горнера Алгебра и начала математического анализа – 10
-
Этье́нн Безу́ (1730 – 1783) – французский математик, член Парижской академии наук Преподавал математику в Училище гардемаринов (1763) и Королевском артиллерийском корпусе (1768). Основные его работы относятся к алгебре (исследование систем алгебраических уравнений высших степеней, исключение неизвестных в таких системах и др.)ю Автор шести томного «Курса математики» (1764—1769), неоднократно пере издававшегося.
-
Теорема Безу: Остаток от деления многочлена Р(х) на двучлен (х – а) равен Р(а) Доказательство. Поделим с остатком многочлен Р(х) на двучлен (х – а): Р(х) = Q(х) (х – а) + R(х) Т.к.степеньR меньше степени (х – а), то R(х) – многочлен нулевой степени, т.е. R(х) = R– число. При х = а, имеем Р(а) = Q(а) (а – а) + R(а. Р(а) = R(а). чтд
-
Теорема Безу: Остаток от деления многочлена Р(х) на двучлен (х – а) равен Р(а) Следствия Число a является корнем многочлена Р(х) тогда и только тогда, когда Р(х) делится без остатка на двучлен (х – а) (отсюда, в частности, следует, что множество корней многочлена тождественно множеству корней соответствующего уравнения) Свободный член многочлена делится на любой целый корень многочлена с целыми коэффициентами (если старший коэффициент равен 1, то все рациональные корни являются и целыми) Пусть α — целый корень приведённого многочлена A(x) с целыми коэффициентами. Тогда для любого целого k число A(k) делится на α-k Если число а является корнем многочлена Р(х), то этот многочлен можно представить в виде произведения (х – а) Р1(х), где Р1(х) - многочлен n-1–й степени. Приложения Теорема Безу и следствия из неё позволяют легко находить рациональные корни уравнений с целыми (рациональными) коэффициентами.
-
-
Уильям Джордж Горнер (1786 – 1837) Английский математик Основные труды по теории алгебраических уравнений. С его именем связана (1819) схема Горнера деления многочлена на двучлен .
-
Частный случай: уравнение четвертой степени
-
Решение уравнений высших степеней (деление многочлена с помощью схемы Горнера)
-
-
-
-
Нет комментариев для данной презентации
Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.