Содержание
-
Свойства производной. Построение графиков функций.
(Повторение материала 10 класса).
-
Построение графика функции, заданной формулой, начинают с её исследования 1) Находят область определения функции 2) Выясняют, является ли функция четной (или нечетной), является ли периодической 3) Находят точки пересечения функции с осями ОХ и ОУ 4) Находят промежутки знакопостоянства функции 5) Находят промежутки возрастания и убывания 6) Точки экстремума и значения функции в этих точках 7) Исследуют поведение функции в «особых» точках и при больших х (проверяют на асимптоты)
-
Промежутки возрастания и убывания (промежутки монотонности).Достаточный признак убывания : если f’ (x) 0, то f (x) возрастает на данном промежутке.
-
Пример. Для функции найти промежутки монотонности. D(f)=( –∞; +∞), функция непрерывна и дифференируема на области определения. 2. если 4х³ –16х = 0; 4х(х–2)(х+2) = 0; х = –2; х =2.
-
Решим неравенства 4х(х-2)(х+2)0 методом интервалов. Ответ: функция возрастает , если х Є [-2;0], [2; +∞); убывает , если х Є (-∞;-2],[0;2].
-
Точки экстремума функции (точки максимума и точки минимума) Точкаa называется точкой максимума функции f(x), если верно неравенство f(x)≤f(a) Если припереходе через точку a производная меняет знак с «+» на «-», то эта точка является точкой максимума
-
Точки экстремума функции (точки максимума и точки минимума) Точкаa называется точкой минимума функции f(x), если верно неравенство f(x) ≥f(a) Если припереходе через точку a производная меняет знак с «-» на «+», то эта точка является точкой минимума
-
Если производная сохраняет свой знак при переходе через точку a, то такая точка называется точкой перегиба
-
Найти точки экстремума функции f(x) = Решение:
-
Ответ: Функция имеет одну точку экстремума , это точка минимума х = 3 При переходе через точку х =0 производная не меняет знак, эта точка не является точкой экстремума, это точка перегиба. При переходе через точку х = 3 производная меняет знак с «-» на «+». Это точка минимума. Если исследовать функцию и построить график, то это будет видно наглядно.
-
Производная на ЕГЭ (В8)
На рисунке изображен график – производной функции определенной на интервале . В какой точке отрезка принимает наименьшее значение? Ответ: –2
-
Производная на ЕГЭ (В8) На рисунке изображен график функцииу = , определенной на интервале (– 5;5 ) . Определите количество целых точек, в которых производная функции отрицательна. Ответ: 8
-
Производная на ЕГЭ (В14)
Найдите наименьшее значение функции у = х³ + 6х² +9х + 24 на отрезке [ - 2; - 0,5 ] Решение. 3х² +12х + 9 3х² +12х + 9 = 0 х = –3; х = –1 3(х+3)(х+1)0 Знаки производной 0 на (–∞;–3], [–1;+ ∞) х= –1 точка минимума Ответ: 20
-
Использованные ресурсы:
Открытый банк задач ЕГЭ по математике 2012 http://live.mephist.ru/show/mathege2010/ Обучающая система Д. Гущина «РЕШУ ЕГЭ» http://reshuege.ru/ Мордкович А.П. П.В. Алгебра и начала анализа (профильный уровень) 10 класс, М., «Мнемозина», 2006. Алимов Ш.А.Алгебра и начала анализа 10-11 класс, М., «Просвещение»,1999.
-
Автор: Заикина Наталья Алексеевна, учитель математики, МОУ «СОШ № 5» г. Саратов
Нет комментариев для данной презентации
Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.